{"title":"用于可持续锌阳极的电沉积物结晶纹理分析","authors":"Xiaomeng Tian, Ying Sun, Hui Li, Xiaoguang Duan, Qin Zhao, Tianyi Ma","doi":"10.1002/aenm.202403995","DOIUrl":null,"url":null,"abstract":"Aqueous Zn metal batteries (AZMBs) offer a promising solution for grid‐scale energy storage. Nonetheless, their commercial deployment is hindered by pivotal challenges related to the Zn metal anode, particularly the morphological heterogeneity of electrodeposits and interfacial chemical instability arising from irreversible and uneven electrodeposition. Crystallographic texturing during Zn electrodeposition emerges as a robust approach to achieve grain‐refinement and chemically stable electrodeposits, thereby promoting the sustainable cycling of the Zn anode. Despite substantial progress in Zn texturing, a comprehensive review that systematically elucidates the principles and mechanisms underlying irregular morphological evolution and crystallographic texturing is still lacking. Therefore, this review addresses this gap by first examining the formation of these issues from a crystallographic perspective. The review then categorizes and details five distinct induction mechanisms for crystallographic texturing in Zn electrodeposits. Eventually, the review offers future perspectives on crystallographic texturing, aiming to advance the transition from academic research to industrial application of AZMBs.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"37 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystallographic Texturing of Electrodeposits for Sustainable Zn Anodes\",\"authors\":\"Xiaomeng Tian, Ying Sun, Hui Li, Xiaoguang Duan, Qin Zhao, Tianyi Ma\",\"doi\":\"10.1002/aenm.202403995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous Zn metal batteries (AZMBs) offer a promising solution for grid‐scale energy storage. Nonetheless, their commercial deployment is hindered by pivotal challenges related to the Zn metal anode, particularly the morphological heterogeneity of electrodeposits and interfacial chemical instability arising from irreversible and uneven electrodeposition. Crystallographic texturing during Zn electrodeposition emerges as a robust approach to achieve grain‐refinement and chemically stable electrodeposits, thereby promoting the sustainable cycling of the Zn anode. Despite substantial progress in Zn texturing, a comprehensive review that systematically elucidates the principles and mechanisms underlying irregular morphological evolution and crystallographic texturing is still lacking. Therefore, this review addresses this gap by first examining the formation of these issues from a crystallographic perspective. The review then categorizes and details five distinct induction mechanisms for crystallographic texturing in Zn electrodeposits. Eventually, the review offers future perspectives on crystallographic texturing, aiming to advance the transition from academic research to industrial application of AZMBs.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202403995\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403995","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Crystallographic Texturing of Electrodeposits for Sustainable Zn Anodes
Aqueous Zn metal batteries (AZMBs) offer a promising solution for grid‐scale energy storage. Nonetheless, their commercial deployment is hindered by pivotal challenges related to the Zn metal anode, particularly the morphological heterogeneity of electrodeposits and interfacial chemical instability arising from irreversible and uneven electrodeposition. Crystallographic texturing during Zn electrodeposition emerges as a robust approach to achieve grain‐refinement and chemically stable electrodeposits, thereby promoting the sustainable cycling of the Zn anode. Despite substantial progress in Zn texturing, a comprehensive review that systematically elucidates the principles and mechanisms underlying irregular morphological evolution and crystallographic texturing is still lacking. Therefore, this review addresses this gap by first examining the formation of these issues from a crystallographic perspective. The review then categorizes and details five distinct induction mechanisms for crystallographic texturing in Zn electrodeposits. Eventually, the review offers future perspectives on crystallographic texturing, aiming to advance the transition from academic research to industrial application of AZMBs.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.