Keyi Zhong, Yaojing Zhang, Shuangyou Zhang, Yuanfei Zhang, Yuan Li, Yue Qin, Yi Wang, Jose M. Chavez Boggio, Xiankai Sun, Chester Shu, Pascal Del'Haye, Hon Ki Tsang
{"title":"利用硅谐振器产生近红外双频合路器","authors":"Keyi Zhong, Yaojing Zhang, Shuangyou Zhang, Yuanfei Zhang, Yuan Li, Yue Qin, Yi Wang, Jose M. Chavez Boggio, Xiankai Sun, Chester Shu, Pascal Del'Haye, Hon Ki Tsang","doi":"10.1002/lpor.202301366","DOIUrl":null,"url":null,"abstract":"Benefitting from the mature, cost‐effective, and scalable manufacturing capabilities of complementary metal‐oxide‐semiconductor (CMOS) technology, silicon photonics has facilitated the seamless and monolithic integration of diverse functionalities, including optical sources, modulators, and photodetectors. Microresonators can generate multiple coherent optical frequency comb lines and serve as optical sources. However, at the telecom band, silicon suffers from two‐photon absorption and free‐carrier absorption, which severely hampers the realization of microcombs from a single silicon chip at telecom wavelengths until now. In this paper, a novel approach is presented and demonstrated with near‐infrared dual‐band frequency combs from a multimode silicon resonator. With a single pumping configuration, dual‐band combs are generated from the interaction between the pump and Raman Stokes fields by involving two different optical mode families but with similar group velocities. It is observed that the pump power required to generate dual‐band combs is as low as 0.7 mW. The work in bringing telecom microcombs to the silicon platform will advance silicon photonics for the next generation of monolithically integrated technology based on a single silicon chip, enabling new possibilities for further exploring silicon photonics‐based applications in optical telecommunications, sensing, and quantum metrology in the telecom band using a monolithic single silicon chip.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"37 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near‐Infrared Dual‐Band Frequency Comb Generation from a Silicon Resonator\",\"authors\":\"Keyi Zhong, Yaojing Zhang, Shuangyou Zhang, Yuanfei Zhang, Yuan Li, Yue Qin, Yi Wang, Jose M. Chavez Boggio, Xiankai Sun, Chester Shu, Pascal Del'Haye, Hon Ki Tsang\",\"doi\":\"10.1002/lpor.202301366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benefitting from the mature, cost‐effective, and scalable manufacturing capabilities of complementary metal‐oxide‐semiconductor (CMOS) technology, silicon photonics has facilitated the seamless and monolithic integration of diverse functionalities, including optical sources, modulators, and photodetectors. Microresonators can generate multiple coherent optical frequency comb lines and serve as optical sources. However, at the telecom band, silicon suffers from two‐photon absorption and free‐carrier absorption, which severely hampers the realization of microcombs from a single silicon chip at telecom wavelengths until now. In this paper, a novel approach is presented and demonstrated with near‐infrared dual‐band frequency combs from a multimode silicon resonator. With a single pumping configuration, dual‐band combs are generated from the interaction between the pump and Raman Stokes fields by involving two different optical mode families but with similar group velocities. It is observed that the pump power required to generate dual‐band combs is as low as 0.7 mW. The work in bringing telecom microcombs to the silicon platform will advance silicon photonics for the next generation of monolithically integrated technology based on a single silicon chip, enabling new possibilities for further exploring silicon photonics‐based applications in optical telecommunications, sensing, and quantum metrology in the telecom band using a monolithic single silicon chip.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202301366\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202301366","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Near‐Infrared Dual‐Band Frequency Comb Generation from a Silicon Resonator
Benefitting from the mature, cost‐effective, and scalable manufacturing capabilities of complementary metal‐oxide‐semiconductor (CMOS) technology, silicon photonics has facilitated the seamless and monolithic integration of diverse functionalities, including optical sources, modulators, and photodetectors. Microresonators can generate multiple coherent optical frequency comb lines and serve as optical sources. However, at the telecom band, silicon suffers from two‐photon absorption and free‐carrier absorption, which severely hampers the realization of microcombs from a single silicon chip at telecom wavelengths until now. In this paper, a novel approach is presented and demonstrated with near‐infrared dual‐band frequency combs from a multimode silicon resonator. With a single pumping configuration, dual‐band combs are generated from the interaction between the pump and Raman Stokes fields by involving two different optical mode families but with similar group velocities. It is observed that the pump power required to generate dual‐band combs is as low as 0.7 mW. The work in bringing telecom microcombs to the silicon platform will advance silicon photonics for the next generation of monolithically integrated technology based on a single silicon chip, enabling new possibilities for further exploring silicon photonics‐based applications in optical telecommunications, sensing, and quantum metrology in the telecom band using a monolithic single silicon chip.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.