{"title":"揭示基于新型无铅 MA2CuBr4 的氨传感器的氨传感行为和降解途径","authors":"Abinash Tiwari, Mir Arjumand and Aswani Yella","doi":"10.1039/D4NR02943G","DOIUrl":null,"url":null,"abstract":"<p >We report a lead-free copper-based halide perovskite gas sensor to detect ammonia gas at ambient temperature. The sensor uses methylammonium copper bromide as the active material and can trace ammonia through both a visual color change method and electrical readout. The maximum calibrated sensitivity based on the optical response of the sensor is ∼95% upon exposure to 10 ppm ammonia gas, which is the best among the colorimetric sensors using halide perovskites. The sensor can be operated at 0.5 V bias with an output current of ∼12 μA at 2 ppm ammonia gas exposure, making our device compatible with low-power gas sensors. Furthermore, we studied the degradation mechanism by subjecting the MA<small><sub>2</sub></small>CuBr<small><sub>4</sub></small> film to ammonia-exposure cycles. We found that there were two factors responsible for the degradation of the sensor: (i) loss of methylamine gas due to formation of NH<small><sub>4</sub></small>Br, and (ii) reduction of Cu<small><sup>2+</sup></small> to Cu<small><sup>+</sup></small>. Increasing the proportion of MABr in the system increased the material's tolerance to ammonia exposure by solving the methylamine gas escape problem. Further, we showed that the stability of the device could be enhanced by depositing porous polymethylmethacrylate over the copper perovskite.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 48","pages":" 22152-22159"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the ammonia sensing behavior and degradation pathways of a novel lead-free MA2CuBr4 based ammonia sensor†\",\"authors\":\"Abinash Tiwari, Mir Arjumand and Aswani Yella\",\"doi\":\"10.1039/D4NR02943G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report a lead-free copper-based halide perovskite gas sensor to detect ammonia gas at ambient temperature. The sensor uses methylammonium copper bromide as the active material and can trace ammonia through both a visual color change method and electrical readout. The maximum calibrated sensitivity based on the optical response of the sensor is ∼95% upon exposure to 10 ppm ammonia gas, which is the best among the colorimetric sensors using halide perovskites. The sensor can be operated at 0.5 V bias with an output current of ∼12 μA at 2 ppm ammonia gas exposure, making our device compatible with low-power gas sensors. Furthermore, we studied the degradation mechanism by subjecting the MA<small><sub>2</sub></small>CuBr<small><sub>4</sub></small> film to ammonia-exposure cycles. We found that there were two factors responsible for the degradation of the sensor: (i) loss of methylamine gas due to formation of NH<small><sub>4</sub></small>Br, and (ii) reduction of Cu<small><sup>2+</sup></small> to Cu<small><sup>+</sup></small>. Increasing the proportion of MABr in the system increased the material's tolerance to ammonia exposure by solving the methylamine gas escape problem. Further, we showed that the stability of the device could be enhanced by depositing porous polymethylmethacrylate over the copper perovskite.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 48\",\"pages\":\" 22152-22159\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr02943g\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr02943g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unraveling the ammonia sensing behavior and degradation pathways of a novel lead-free MA2CuBr4 based ammonia sensor†
We report a lead-free copper-based halide perovskite gas sensor to detect ammonia gas at ambient temperature. The sensor uses methylammonium copper bromide as the active material and can trace ammonia through both a visual color change method and electrical readout. The maximum calibrated sensitivity based on the optical response of the sensor is ∼95% upon exposure to 10 ppm ammonia gas, which is the best among the colorimetric sensors using halide perovskites. The sensor can be operated at 0.5 V bias with an output current of ∼12 μA at 2 ppm ammonia gas exposure, making our device compatible with low-power gas sensors. Furthermore, we studied the degradation mechanism by subjecting the MA2CuBr4 film to ammonia-exposure cycles. We found that there were two factors responsible for the degradation of the sensor: (i) loss of methylamine gas due to formation of NH4Br, and (ii) reduction of Cu2+ to Cu+. Increasing the proportion of MABr in the system increased the material's tolerance to ammonia exposure by solving the methylamine gas escape problem. Further, we showed that the stability of the device could be enhanced by depositing porous polymethylmethacrylate over the copper perovskite.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.