{"title":"用处理过的水栽培的蔬菜中微污染物、副产品和代谢物的积累","authors":"Yu-Hsiang Wang, Angela Yu-Chen Lin","doi":"10.1016/j.jhazmat.2024.136475","DOIUrl":null,"url":null,"abstract":"Due to a lack of water resources, people are starting to use treated wastewater to irrigate crops and vegetables. However, the risk of micropollutant exposure from vegetables cultivated with treated wastewater has been largely underestimated. To elucidate this underestimation, a hydroponic system for lettuce cultivation using a nutrient solution spiked with three pharmaceuticals with different log K<sub>OW</sub> values (acetaminophen (0.46), ketamine (2.18) and methadone (3.93)) was examined, and the total bioconcentration factors (BCFs) (including the transformation of metabolites) of the pharmaceuticals were found to be 0, 120±7.76 and 176±16.0<!-- --> <!-- -->L/kg, respectively. To simulate treated wastewater, these nutrient solutions were first treated by sunlight photolysis, chlorination, and sunlight/chlorine before use in lettuce cultivation. During the treatment, ketamine and methadone were transformed into norketamine (up to 6.0%) and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) (up to 16%), respectively; the BCF of norketamine (162±22.6<!-- --> <!-- -->L/kg) was found to be even greater than ketamine. In addition, other degradation byproducts (including 3 trace and 13 undetected byproducts in the nutrient solutions) were taken up by the lettuce. In parallel, ketamine and methadone can also undergo metabolism in lettuce; the conversion rate to norketamine increased from 22±7.0% to 45±0.062 when the ketamine concentration decreased from 1000 to 50<!-- --> <!-- -->μg/L.","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":"164 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accumulation of Micropollutants, Byproducts, and Metabolites in Vegetables Cultivated with Treated Water\",\"authors\":\"Yu-Hsiang Wang, Angela Yu-Chen Lin\",\"doi\":\"10.1016/j.jhazmat.2024.136475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to a lack of water resources, people are starting to use treated wastewater to irrigate crops and vegetables. However, the risk of micropollutant exposure from vegetables cultivated with treated wastewater has been largely underestimated. To elucidate this underestimation, a hydroponic system for lettuce cultivation using a nutrient solution spiked with three pharmaceuticals with different log K<sub>OW</sub> values (acetaminophen (0.46), ketamine (2.18) and methadone (3.93)) was examined, and the total bioconcentration factors (BCFs) (including the transformation of metabolites) of the pharmaceuticals were found to be 0, 120±7.76 and 176±16.0<!-- --> <!-- -->L/kg, respectively. To simulate treated wastewater, these nutrient solutions were first treated by sunlight photolysis, chlorination, and sunlight/chlorine before use in lettuce cultivation. During the treatment, ketamine and methadone were transformed into norketamine (up to 6.0%) and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) (up to 16%), respectively; the BCF of norketamine (162±22.6<!-- --> <!-- -->L/kg) was found to be even greater than ketamine. In addition, other degradation byproducts (including 3 trace and 13 undetected byproducts in the nutrient solutions) were taken up by the lettuce. In parallel, ketamine and methadone can also undergo metabolism in lettuce; the conversion rate to norketamine increased from 22±7.0% to 45±0.062 when the ketamine concentration decreased from 1000 to 50<!-- --> <!-- -->μg/L.\",\"PeriodicalId\":12,\"journal\":{\"name\":\"ACS Chemical Health & Safety\",\"volume\":\"164 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Health & Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.136475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Health & Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Accumulation of Micropollutants, Byproducts, and Metabolites in Vegetables Cultivated with Treated Water
Due to a lack of water resources, people are starting to use treated wastewater to irrigate crops and vegetables. However, the risk of micropollutant exposure from vegetables cultivated with treated wastewater has been largely underestimated. To elucidate this underestimation, a hydroponic system for lettuce cultivation using a nutrient solution spiked with three pharmaceuticals with different log KOW values (acetaminophen (0.46), ketamine (2.18) and methadone (3.93)) was examined, and the total bioconcentration factors (BCFs) (including the transformation of metabolites) of the pharmaceuticals were found to be 0, 120±7.76 and 176±16.0 L/kg, respectively. To simulate treated wastewater, these nutrient solutions were first treated by sunlight photolysis, chlorination, and sunlight/chlorine before use in lettuce cultivation. During the treatment, ketamine and methadone were transformed into norketamine (up to 6.0%) and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) (up to 16%), respectively; the BCF of norketamine (162±22.6 L/kg) was found to be even greater than ketamine. In addition, other degradation byproducts (including 3 trace and 13 undetected byproducts in the nutrient solutions) were taken up by the lettuce. In parallel, ketamine and methadone can also undergo metabolism in lettuce; the conversion rate to norketamine increased from 22±7.0% to 45±0.062 when the ketamine concentration decreased from 1000 to 50 μg/L.
期刊介绍:
The Journal of Chemical Health and Safety focuses on news, information, and ideas relating to issues and advances in chemical health and safety. The Journal of Chemical Health and Safety covers up-to-the minute, in-depth views of safety issues ranging from OSHA and EPA regulations to the safe handling of hazardous waste, from the latest innovations in effective chemical hygiene practices to the courts'' most recent rulings on safety-related lawsuits. The Journal of Chemical Health and Safety presents real-world information that health, safety and environmental professionals and others responsible for the safety of their workplaces can put to use right away, identifying potential and developing safety concerns before they do real harm.