具有限域离子传输途径的石榴石/聚合物复合薄膜电解质的高性能固态锂金属电池

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-11-07 DOI:10.1021/acsnano.4c11205
Chao Wang, Wenxin Li, Dabing Li, Xiaoxue Zhao, Yang Li, Yanling Zhang, Xiang Qi, Meng Wu, Li-Zhen Fan
{"title":"具有限域离子传输途径的石榴石/聚合物复合薄膜电解质的高性能固态锂金属电池","authors":"Chao Wang, Wenxin Li, Dabing Li, Xiaoxue Zhao, Yang Li, Yanling Zhang, Xiang Qi, Meng Wu, Li-Zhen Fan","doi":"10.1021/acsnano.4c11205","DOIUrl":null,"url":null,"abstract":"The integrated approach of interfacial engineering and composite electrolytes is crucial for the market application of Li metal batteries (LMBs). A 22 μm thin-film type polymer/Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> (LLZTO) composite solid-state electrolyte (LPCE) was designed that combines fast ion conduction and stable interfacial evolution, enhancing lithium metal interface stability and cycling performance. The ether-based molecular coordination groups/clusters formed by triethylene glycol dimethyl ether (TGDE) and anions facilitated the movement of Li<sup>+</sup> between the polymer chain segments. These specific coordination clusters significantly “constrained” the interaction between anions and Li<sup>+</sup>, inducing the anions to follow the clusters to the Li metal and preferentially participate in solid electrolyte interface (SEI) derivatization. The inorganic salt-rich gradient SEI modulates Li<sup>+</sup> deposition and inhibits uncontrolled dendrite growth, achieving stable cycling of Li symmetric cell at 0.2 mA cm<sup>–2</sup> for over 2000 h. Furthermore, the Li||NCM811 cell at a rate of 0.1 C exhibits an initial discharge capacity of 194.5 mAh g<sup>–1</sup>, maintaining a capacity retention rate of over 90% after 500 cycles. This work demonstrates the importance of domain-limited ion clusters in ion transport and interfacial evolution, providing a perspective for solid-state LMBs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"10 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Performance Solid-State Lithium Metal Batteries of Garnet/Polymer Composite Thin-Film Electrolyte with Domain-Limited Ion Transport Pathways\",\"authors\":\"Chao Wang, Wenxin Li, Dabing Li, Xiaoxue Zhao, Yang Li, Yanling Zhang, Xiang Qi, Meng Wu, Li-Zhen Fan\",\"doi\":\"10.1021/acsnano.4c11205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integrated approach of interfacial engineering and composite electrolytes is crucial for the market application of Li metal batteries (LMBs). A 22 μm thin-film type polymer/Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> (LLZTO) composite solid-state electrolyte (LPCE) was designed that combines fast ion conduction and stable interfacial evolution, enhancing lithium metal interface stability and cycling performance. The ether-based molecular coordination groups/clusters formed by triethylene glycol dimethyl ether (TGDE) and anions facilitated the movement of Li<sup>+</sup> between the polymer chain segments. These specific coordination clusters significantly “constrained” the interaction between anions and Li<sup>+</sup>, inducing the anions to follow the clusters to the Li metal and preferentially participate in solid electrolyte interface (SEI) derivatization. The inorganic salt-rich gradient SEI modulates Li<sup>+</sup> deposition and inhibits uncontrolled dendrite growth, achieving stable cycling of Li symmetric cell at 0.2 mA cm<sup>–2</sup> for over 2000 h. Furthermore, the Li||NCM811 cell at a rate of 0.1 C exhibits an initial discharge capacity of 194.5 mAh g<sup>–1</sup>, maintaining a capacity retention rate of over 90% after 500 cycles. This work demonstrates the importance of domain-limited ion clusters in ion transport and interfacial evolution, providing a perspective for solid-state LMBs.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c11205\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11205","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

界面工程和复合电解质的综合方法对于锂金属电池(LMB)的市场应用至关重要。本研究设计了一种 22 μm 薄膜型聚合物/Li6.4La3Zr1.4Ta0.6O12(LLZTO)复合固态电解质(LPCE),该电解质兼具快速离子传导和稳定的界面演化特性,可提高锂金属界面的稳定性和循环性能。由三乙二醇二甲醚(TGDE)和阴离子形成的醚基分子配位基团/簇促进了 Li+ 在聚合物链段之间的移动。这些特定的配位簇极大地 "限制 "了阴离子与 Li+ 之间的相互作用,促使阴离子跟随配位簇到达金属锂处,优先参与固态电解质界面(SEI)衍生。富含无机盐的梯度 SEI 调节了 Li+ 的沉积,抑制了枝晶的失控生长,使锂离子对称电池在 0.2 mA cm-2 的条件下稳定循环超过 2000 小时。这项工作证明了限域离子群在离子传输和界面演化中的重要性,为固态 LMB 提供了一个视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Performance Solid-State Lithium Metal Batteries of Garnet/Polymer Composite Thin-Film Electrolyte with Domain-Limited Ion Transport Pathways

High-Performance Solid-State Lithium Metal Batteries of Garnet/Polymer Composite Thin-Film Electrolyte with Domain-Limited Ion Transport Pathways
The integrated approach of interfacial engineering and composite electrolytes is crucial for the market application of Li metal batteries (LMBs). A 22 μm thin-film type polymer/Li6.4La3Zr1.4Ta0.6O12 (LLZTO) composite solid-state electrolyte (LPCE) was designed that combines fast ion conduction and stable interfacial evolution, enhancing lithium metal interface stability and cycling performance. The ether-based molecular coordination groups/clusters formed by triethylene glycol dimethyl ether (TGDE) and anions facilitated the movement of Li+ between the polymer chain segments. These specific coordination clusters significantly “constrained” the interaction between anions and Li+, inducing the anions to follow the clusters to the Li metal and preferentially participate in solid electrolyte interface (SEI) derivatization. The inorganic salt-rich gradient SEI modulates Li+ deposition and inhibits uncontrolled dendrite growth, achieving stable cycling of Li symmetric cell at 0.2 mA cm–2 for over 2000 h. Furthermore, the Li||NCM811 cell at a rate of 0.1 C exhibits an initial discharge capacity of 194.5 mAh g–1, maintaining a capacity retention rate of over 90% after 500 cycles. This work demonstrates the importance of domain-limited ion clusters in ion transport and interfacial evolution, providing a perspective for solid-state LMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信