Alejandro Fernández, Margarida Gairí, María Teresa González, Miquel Pons
{"title":"监测酪氨酸激酶抑制剂机制的快速方法","authors":"Alejandro Fernández, Margarida Gairí, María Teresa González, Miquel Pons","doi":"10.1021/acs.jmedchem.4c02042","DOIUrl":null,"url":null,"abstract":"Methionine residues within the kinase domain of Src serve as unique NMR probes capable of distinguishing between distinct conformational states of full-length Src, including alternative drug-inhibited forms. This approach offers a rapid method to differentiate between various inhibition mechanisms at any stage of drug development, eliminating the need to resolve the structure of Src-drug complexes. Using selectively <sup>13</sup>C-methyl-enriched methionine, spectra can be acquired in under an hour, while natural abundance spectra with comparable information are achievable within a few hours.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast Method to Monitor Tyrosine Kinase Inhibitor Mechanisms\",\"authors\":\"Alejandro Fernández, Margarida Gairí, María Teresa González, Miquel Pons\",\"doi\":\"10.1021/acs.jmedchem.4c02042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methionine residues within the kinase domain of Src serve as unique NMR probes capable of distinguishing between distinct conformational states of full-length Src, including alternative drug-inhibited forms. This approach offers a rapid method to differentiate between various inhibition mechanisms at any stage of drug development, eliminating the need to resolve the structure of Src-drug complexes. Using selectively <sup>13</sup>C-methyl-enriched methionine, spectra can be acquired in under an hour, while natural abundance spectra with comparable information are achievable within a few hours.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c02042\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02042","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A Fast Method to Monitor Tyrosine Kinase Inhibitor Mechanisms
Methionine residues within the kinase domain of Src serve as unique NMR probes capable of distinguishing between distinct conformational states of full-length Src, including alternative drug-inhibited forms. This approach offers a rapid method to differentiate between various inhibition mechanisms at any stage of drug development, eliminating the need to resolve the structure of Src-drug complexes. Using selectively 13C-methyl-enriched methionine, spectra can be acquired in under an hour, while natural abundance spectra with comparable information are achievable within a few hours.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.