Qazi Muhammad Saqib, Muhammad Yousuf, Muhammad Noman, Abdul Mannan, Chandrashekhar S. Patil, Jungmin Kim, Swapnil R. Patil, Youngbin Ko, Nilesh R. Chodankar, Jinho Bae
{"title":"任意定向三电纳米发电机:面向可持续未来的先进能量收集技术","authors":"Qazi Muhammad Saqib, Muhammad Yousuf, Muhammad Noman, Abdul Mannan, Chandrashekhar S. Patil, Jungmin Kim, Swapnil R. Patil, Youngbin Ko, Nilesh R. Chodankar, Jinho Bae","doi":"10.1016/j.nanoen.2024.110456","DOIUrl":null,"url":null,"abstract":"Harnessing electricity from our surrounding environments offers a promising solution to the global energy crisis. Triboelectric nanogenerators (TENGs) have proven effective in capturing electrical energy from ambient sources. However, traditional TENGs typically operate in a single direction as triboelectrification occurs on fixed solid surfaces. To address this shortcoming, researchers are actively developing TENGs capable of harvesting energy from multiple directions, utilizing diverse natural forces such as flowing water, ocean waves, wind, sound, and various body movements. This review explores the recent developments of arbitrary directional freely moving particles, wind, rain, and ocean based TENGs, which can generate electrical energy from multi-directional forces as arbitrary directional energy harvesters. Furthermore, the key challenges and future perspectives for scavenging triboelectric energy from arbitrary directions are presented. Finally, the SWOT analysis (strengths S, weaknesses W, opportunities O, and threats T) has been summarized to evaluate arbitrary directional responsive TENG technologies from freely moving particles, wind/breeze movement, rainfall, and ocean waves in TENGs.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arbitrary Directional Triboelectric Nanogenerators: Advanced Energy Harvesting for Sustainable Future\",\"authors\":\"Qazi Muhammad Saqib, Muhammad Yousuf, Muhammad Noman, Abdul Mannan, Chandrashekhar S. Patil, Jungmin Kim, Swapnil R. Patil, Youngbin Ko, Nilesh R. Chodankar, Jinho Bae\",\"doi\":\"10.1016/j.nanoen.2024.110456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harnessing electricity from our surrounding environments offers a promising solution to the global energy crisis. Triboelectric nanogenerators (TENGs) have proven effective in capturing electrical energy from ambient sources. However, traditional TENGs typically operate in a single direction as triboelectrification occurs on fixed solid surfaces. To address this shortcoming, researchers are actively developing TENGs capable of harvesting energy from multiple directions, utilizing diverse natural forces such as flowing water, ocean waves, wind, sound, and various body movements. This review explores the recent developments of arbitrary directional freely moving particles, wind, rain, and ocean based TENGs, which can generate electrical energy from multi-directional forces as arbitrary directional energy harvesters. Furthermore, the key challenges and future perspectives for scavenging triboelectric energy from arbitrary directions are presented. Finally, the SWOT analysis (strengths S, weaknesses W, opportunities O, and threats T) has been summarized to evaluate arbitrary directional responsive TENG technologies from freely moving particles, wind/breeze movement, rainfall, and ocean waves in TENGs.\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nanoen.2024.110456\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110456","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
利用周围环境中的电能为解决全球能源危机提供了一个前景广阔的方案。事实证明,三电纳米发电机(TENGs)能有效捕捉周围环境中的电能。然而,传统的 TENG 通常在单一方向上运行,因为三电化作用发生在固定的固体表面上。为了解决这一缺陷,研究人员正在积极开发能够从多个方向收集能量的 TENG,利用各种自然力,如流水、海浪、风、声音和各种身体运动。本综述探讨了基于任意方向自由移动粒子、风、雨和海洋的 TENGs 的最新发展,这些 TENGs 作为任意方向能量收集器,可从多方向力中产生电能。此外,还介绍了从任意方向收集三电能的主要挑战和未来展望。最后,总结了 SWOT 分析(优势 S、劣势 W、机会 O 和威胁 T),以评估从自由移动颗粒、风/微风运动、降雨和海浪中获取任意方向响应的 TENG 技术。
Arbitrary Directional Triboelectric Nanogenerators: Advanced Energy Harvesting for Sustainable Future
Harnessing electricity from our surrounding environments offers a promising solution to the global energy crisis. Triboelectric nanogenerators (TENGs) have proven effective in capturing electrical energy from ambient sources. However, traditional TENGs typically operate in a single direction as triboelectrification occurs on fixed solid surfaces. To address this shortcoming, researchers are actively developing TENGs capable of harvesting energy from multiple directions, utilizing diverse natural forces such as flowing water, ocean waves, wind, sound, and various body movements. This review explores the recent developments of arbitrary directional freely moving particles, wind, rain, and ocean based TENGs, which can generate electrical energy from multi-directional forces as arbitrary directional energy harvesters. Furthermore, the key challenges and future perspectives for scavenging triboelectric energy from arbitrary directions are presented. Finally, the SWOT analysis (strengths S, weaknesses W, opportunities O, and threats T) has been summarized to evaluate arbitrary directional responsive TENG technologies from freely moving particles, wind/breeze movement, rainfall, and ocean waves in TENGs.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.