用纳米硅酸盐蒸发诱导烧结 Ga60.5In25Sn13Zn1.5 合金制备的电磁屏蔽纱线的电磁波反射性能优化

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yichao Wang, Jingli Tang, Mengjuan He, Liqian Huang, Xueli Wang, Jianyong Yu
{"title":"用纳米硅酸盐蒸发诱导烧结 Ga60.5In25Sn13Zn1.5 合金制备的电磁屏蔽纱线的电磁波反射性能优化","authors":"Yichao Wang, Jingli Tang, Mengjuan He, Liqian Huang, Xueli Wang, Jianyong Yu","doi":"10.1021/acs.langmuir.4c03258","DOIUrl":null,"url":null,"abstract":"Electromagnetic interference (EMI) shielding textiles have received widespread attention, and liquid metal (LM) shows superiority in flexible and deformable electronics. Here, we introduce a novel method using nanosilicates to help sinter LM through capillary evaporation, resulting in strong adhesion to substrates. By adjustment of the amount of nanosilicates, flexible EMI shielding yarns are created using dip-coating and curing processes. The sintered LM tightly adhered to the undulating and uneven surfaces of polyurethane (PU) yarns. The as-fabricated ION/LM@PU (“ION” is abbreviation of “ionogel”) has strong EMI shielding and low EM-wave reflection due to the high electrical conductivity of the LM layer and good impedance matching of P(AAm-<i>co</i>-AA) ionogel. The addition of an ionogel enhances EM-wave absorption and strengthens interfacial polarization, making it an effective green EMI shielding yarn for reducing secondary reflection pollution. ION/LM@PU exhibited high total electromagnetic interference shielding effectiveness (EMI SE<sub>T</sub>) (∼56 dB), low reflected power coefficient (R) (∼0.153), high impedance matching (|<i>Z</i><sub>in</sub>/<i>Z</i><sub>0</sub>| ≈ 0.660), high tensile strength (∼23.75 MPa), and high elastic recovery (∼0.92 at 10th stretch–release cycle). The EMI shielding mechanism of ION/LM@PU ± 60° is composed of reflective loss and absorption loss (including multireflective loss, conduction loss, dipole polarization loss, and interfacial polarization loss).","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Electromagnetic-Wave Reflectivity Performance of Electromagnetic Shielding Yarn Prepared by Evaporation-Induced Sintering of Ga60.5In25Sn13Zn1.5 Alloy with Nanosilicates\",\"authors\":\"Yichao Wang, Jingli Tang, Mengjuan He, Liqian Huang, Xueli Wang, Jianyong Yu\",\"doi\":\"10.1021/acs.langmuir.4c03258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic interference (EMI) shielding textiles have received widespread attention, and liquid metal (LM) shows superiority in flexible and deformable electronics. Here, we introduce a novel method using nanosilicates to help sinter LM through capillary evaporation, resulting in strong adhesion to substrates. By adjustment of the amount of nanosilicates, flexible EMI shielding yarns are created using dip-coating and curing processes. The sintered LM tightly adhered to the undulating and uneven surfaces of polyurethane (PU) yarns. The as-fabricated ION/LM@PU (“ION” is abbreviation of “ionogel”) has strong EMI shielding and low EM-wave reflection due to the high electrical conductivity of the LM layer and good impedance matching of P(AAm-<i>co</i>-AA) ionogel. The addition of an ionogel enhances EM-wave absorption and strengthens interfacial polarization, making it an effective green EMI shielding yarn for reducing secondary reflection pollution. ION/LM@PU exhibited high total electromagnetic interference shielding effectiveness (EMI SE<sub>T</sub>) (∼56 dB), low reflected power coefficient (R) (∼0.153), high impedance matching (|<i>Z</i><sub>in</sub>/<i>Z</i><sub>0</sub>| ≈ 0.660), high tensile strength (∼23.75 MPa), and high elastic recovery (∼0.92 at 10th stretch–release cycle). The EMI shielding mechanism of ION/LM@PU ± 60° is composed of reflective loss and absorption loss (including multireflective loss, conduction loss, dipole polarization loss, and interfacial polarization loss).\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03258\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03258","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电磁干扰(EMI)屏蔽纺织品已受到广泛关注,而液态金属(LM)在柔性和可变形电子产品中显示出优越性。在此,我们介绍一种新方法,利用纳米硅酸盐通过毛细管蒸发帮助烧结液态金属,从而使其与基底产生强大的附着力。通过调整纳米硅酸盐的用量,利用浸涂和固化工艺制造出柔性 EMI 屏蔽纱线。烧结的 LM 紧紧地粘附在聚氨酯(PU)纱起伏不平的表面上。由于 LM 层的高导电性和 P(AAm-co-AA)离子凝胶的良好阻抗匹配,制成的 ION/LM@PU("ION "是 "离子凝胶 "的缩写)具有很强的 EMI 屏蔽能力和很低的电磁波反射率。离子凝胶的加入增强了对电磁波的吸收,加强了界面极化,使其成为一种有效的绿色 EMI 屏蔽纱线,减少了二次反射污染。ION/LM@PU 具有高电磁干扰总屏蔽效能(EMI SET)(∼56 dB)、低反射功率系数(R)(∼0.153)、高阻抗匹配(|Zin/Z0| ≈0.660)、高拉伸强度(∼23.75 MPa)和高弹性恢复(第 10 次拉伸-释放循环时∼0.92)。ION/LM@PU ± 60° 的电磁干扰屏蔽机理由反射损耗和吸收损耗(包括多重反射损耗、传导损耗、偶极子极化损耗和界面极化损耗)组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimization of Electromagnetic-Wave Reflectivity Performance of Electromagnetic Shielding Yarn Prepared by Evaporation-Induced Sintering of Ga60.5In25Sn13Zn1.5 Alloy with Nanosilicates

Optimization of Electromagnetic-Wave Reflectivity Performance of Electromagnetic Shielding Yarn Prepared by Evaporation-Induced Sintering of Ga60.5In25Sn13Zn1.5 Alloy with Nanosilicates
Electromagnetic interference (EMI) shielding textiles have received widespread attention, and liquid metal (LM) shows superiority in flexible and deformable electronics. Here, we introduce a novel method using nanosilicates to help sinter LM through capillary evaporation, resulting in strong adhesion to substrates. By adjustment of the amount of nanosilicates, flexible EMI shielding yarns are created using dip-coating and curing processes. The sintered LM tightly adhered to the undulating and uneven surfaces of polyurethane (PU) yarns. The as-fabricated ION/LM@PU (“ION” is abbreviation of “ionogel”) has strong EMI shielding and low EM-wave reflection due to the high electrical conductivity of the LM layer and good impedance matching of P(AAm-co-AA) ionogel. The addition of an ionogel enhances EM-wave absorption and strengthens interfacial polarization, making it an effective green EMI shielding yarn for reducing secondary reflection pollution. ION/LM@PU exhibited high total electromagnetic interference shielding effectiveness (EMI SET) (∼56 dB), low reflected power coefficient (R) (∼0.153), high impedance matching (|Zin/Z0| ≈ 0.660), high tensile strength (∼23.75 MPa), and high elastic recovery (∼0.92 at 10th stretch–release cycle). The EMI shielding mechanism of ION/LM@PU ± 60° is composed of reflective loss and absorption loss (including multireflective loss, conduction loss, dipole polarization loss, and interfacial polarization loss).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信