火灾引发泥炭土有机物电子传递特性的多重变化:功能团、石墨碳和铁的作用

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Peijie Yang, Shuai Wang, Tianran Sun, Tao Jiang, Yifan Cui, Guangliang Liu, Yingying Guo, Yanwei Liu, Ligang Hu, Jianbo Shi, Qinghua Zhang, Yongguang Yin, Yong Cai, Guibin Jiang
{"title":"火灾引发泥炭土有机物电子传递特性的多重变化:功能团、石墨碳和铁的作用","authors":"Peijie Yang, Shuai Wang, Tianran Sun, Tao Jiang, Yifan Cui, Guangliang Liu, Yingying Guo, Yanwei Liu, Ligang Hu, Jianbo Shi, Qinghua Zhang, Yongguang Yin, Yong Cai, Guibin Jiang","doi":"10.1021/acs.est.4c06586","DOIUrl":null,"url":null,"abstract":"Peatland fires induced changes in electron transfer properties and relevant electroactive structures of peat soil organic matter (PSOM) remain ambiguous, impeding comprehension of postfire biogeochemical processes. Here, we revealed temperature-dependent electron exchange capacity (EEC) of PSOM dynamics through simulated peat soil burning (150–500 °C), which extremely changed postfire microbial Fe-nanoparticles reduction and methanogenesis. EEC diminished significantly (60–75% loss) due to phenolic-quinone moieties depletion with increasing temperature, regardless of oxygen availability. The final EEC in oxic burning surpassed that of anoxic burning by 1.5 times, attributed to additional quinones from oxygen incorporation. Notably, EEC exhibited heat resistance up to 200 °C and stabilized above 350 °C. Additionally, fire reshaped the EEC-relevant redox-active moieties. Heterocyclic-N generated from burning predominantly contributed to the electron-accepting capacity (EAC) alongside quinones, while phenolic moieties and bonded Fe(II) enhanced the electron-donating capacity (EDC). However, the preferential binding of heterocyclic-N to Fe(II) restricted the EDC of Fe(II). Interestingly, the decrease in EAC declined its electron-shuttling effects in microbial Fe nanoparticle reduction, but fire-induced graphitic carbon formation increased the electrical conductivity (EC) of PSOM, promoting electron transfer. Further, enhanced EC may facilitate methanogenesis in postfire peatlands. These findings advance our understanding of elemental biogeochemical cycles and greenhouse emission mechanisms in postfire peatlands.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"70 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fire-Induced Multiple Changes in Electron Transfer Properties of Peat Soil Organic Matter: The Role of Functional Groups, Graphitic Carbon, and Iron\",\"authors\":\"Peijie Yang, Shuai Wang, Tianran Sun, Tao Jiang, Yifan Cui, Guangliang Liu, Yingying Guo, Yanwei Liu, Ligang Hu, Jianbo Shi, Qinghua Zhang, Yongguang Yin, Yong Cai, Guibin Jiang\",\"doi\":\"10.1021/acs.est.4c06586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peatland fires induced changes in electron transfer properties and relevant electroactive structures of peat soil organic matter (PSOM) remain ambiguous, impeding comprehension of postfire biogeochemical processes. Here, we revealed temperature-dependent electron exchange capacity (EEC) of PSOM dynamics through simulated peat soil burning (150–500 °C), which extremely changed postfire microbial Fe-nanoparticles reduction and methanogenesis. EEC diminished significantly (60–75% loss) due to phenolic-quinone moieties depletion with increasing temperature, regardless of oxygen availability. The final EEC in oxic burning surpassed that of anoxic burning by 1.5 times, attributed to additional quinones from oxygen incorporation. Notably, EEC exhibited heat resistance up to 200 °C and stabilized above 350 °C. Additionally, fire reshaped the EEC-relevant redox-active moieties. Heterocyclic-N generated from burning predominantly contributed to the electron-accepting capacity (EAC) alongside quinones, while phenolic moieties and bonded Fe(II) enhanced the electron-donating capacity (EDC). However, the preferential binding of heterocyclic-N to Fe(II) restricted the EDC of Fe(II). Interestingly, the decrease in EAC declined its electron-shuttling effects in microbial Fe nanoparticle reduction, but fire-induced graphitic carbon formation increased the electrical conductivity (EC) of PSOM, promoting electron transfer. Further, enhanced EC may facilitate methanogenesis in postfire peatlands. These findings advance our understanding of elemental biogeochemical cycles and greenhouse emission mechanisms in postfire peatlands.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c06586\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c06586","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

泥炭地火灾引起的泥炭土有机质(PSOM)电子传递特性和相关电活性结构的变化仍然模糊不清,阻碍了对火灾后生物地球化学过程的理解。在这里,我们通过模拟泥炭土壤燃烧(150-500 °C),揭示了泥炭土壤有机质动态电子交换容量(EEC)与温度的关系。由于酚醌类物质的耗竭,EEC 随温度升高而显著降低(损失 60-75%),与氧气供应无关。缺氧燃烧时的最终 EEC 值是缺氧燃烧时的 1.5 倍,这归因于氧的加入产生了额外的醌类物质。值得注意的是,EEC 具有高达 200 °C 的耐热性,并在 350 °C 以上趋于稳定。此外,火还重塑了 EEC 的相关氧化还原活性分子。燃烧产生的杂环-N主要与醌类化合物一起提高了电子接受能力(EAC),而酚类分子和结合的铁(II)则提高了电子负载能力(EDC)。然而,杂环-N 与 Fe(II) 的优先结合限制了 Fe(II) 的 EDC。有趣的是,EAC 的降低降低了其在微生物纳米铁还原过程中的电子障蔽效应,但火灾诱导的石墨碳形成提高了 PSOM 的导电率(EC),促进了电子转移。此外,增强的导电率可能会促进火后泥炭地的甲烷生成。这些发现加深了我们对火烧后泥炭地的元素生物地球化学循环和温室气体排放机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fire-Induced Multiple Changes in Electron Transfer Properties of Peat Soil Organic Matter: The Role of Functional Groups, Graphitic Carbon, and Iron

Fire-Induced Multiple Changes in Electron Transfer Properties of Peat Soil Organic Matter: The Role of Functional Groups, Graphitic Carbon, and Iron
Peatland fires induced changes in electron transfer properties and relevant electroactive structures of peat soil organic matter (PSOM) remain ambiguous, impeding comprehension of postfire biogeochemical processes. Here, we revealed temperature-dependent electron exchange capacity (EEC) of PSOM dynamics through simulated peat soil burning (150–500 °C), which extremely changed postfire microbial Fe-nanoparticles reduction and methanogenesis. EEC diminished significantly (60–75% loss) due to phenolic-quinone moieties depletion with increasing temperature, regardless of oxygen availability. The final EEC in oxic burning surpassed that of anoxic burning by 1.5 times, attributed to additional quinones from oxygen incorporation. Notably, EEC exhibited heat resistance up to 200 °C and stabilized above 350 °C. Additionally, fire reshaped the EEC-relevant redox-active moieties. Heterocyclic-N generated from burning predominantly contributed to the electron-accepting capacity (EAC) alongside quinones, while phenolic moieties and bonded Fe(II) enhanced the electron-donating capacity (EDC). However, the preferential binding of heterocyclic-N to Fe(II) restricted the EDC of Fe(II). Interestingly, the decrease in EAC declined its electron-shuttling effects in microbial Fe nanoparticle reduction, but fire-induced graphitic carbon formation increased the electrical conductivity (EC) of PSOM, promoting electron transfer. Further, enhanced EC may facilitate methanogenesis in postfire peatlands. These findings advance our understanding of elemental biogeochemical cycles and greenhouse emission mechanisms in postfire peatlands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信