Qiang Pu, Kun Zhang, Jiang Liu, Qianshuo Zhang, Mahmoud A. Abdelhafiz, Bo Meng, Xinbin Feng
{"title":"关键的汞甲基化活性微生物及其对稻田土壤中甲基汞生成的协同效应","authors":"Qiang Pu, Kun Zhang, Jiang Liu, Qianshuo Zhang, Mahmoud A. Abdelhafiz, Bo Meng, Xinbin Feng","doi":"10.1016/j.jhazmat.2024.136481","DOIUrl":null,"url":null,"abstract":"Rice contamination with neurotoxic methylmercury (MeHg) from paddy soils is an escalating global concern. Identifying the microorganisms responsible for mercury (Hg) methylation in these soils is essential for controlling Hg contamination in the food chain and mitigating health impacts. Current research often focuses on total Hg-methylating microorganisms, overlooking the contributions of active ones, which can lead to either overestimating or neglecting the specific roles of microorganisms in Hg methylation within paddy soils. In this study, active Hg-methylating microorganisms in paddy soils were identified using a combination of DNA-SIP, Hg isotope labelling, and Hg methylation gene sequencing techniques. Our findings revealed that <em>Geobacter</em> and <em>Anaerolinea</em> are pivotal active Hg-methylating microorganisms across a contamination gradient in paddy soils. Transcriptomic analysis of soils from major rice-producing provinces in China confirmed the widespread and synergistic involvement of these microorganisms. Microbial incubation further validated their interaction significantly enhances Hg methylation, with Me<sup>198</sup>Hg concentrations increasing 2.8-fold compared to <em>Geobacter</em> alone and 5.2-fold compared to <em>Anaerolinea</em> alone. These findings enhance our understanding of microbial Hg methylation in paddy soils, providing critical insights for accurately predicting soil MeHg load, rice grain MeHg contamination, and human MeHg exposure risks.","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":"29 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Key active mercury methylating microorganisms and their synergistic effects on methylmercury production in paddy soils\",\"authors\":\"Qiang Pu, Kun Zhang, Jiang Liu, Qianshuo Zhang, Mahmoud A. Abdelhafiz, Bo Meng, Xinbin Feng\",\"doi\":\"10.1016/j.jhazmat.2024.136481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rice contamination with neurotoxic methylmercury (MeHg) from paddy soils is an escalating global concern. Identifying the microorganisms responsible for mercury (Hg) methylation in these soils is essential for controlling Hg contamination in the food chain and mitigating health impacts. Current research often focuses on total Hg-methylating microorganisms, overlooking the contributions of active ones, which can lead to either overestimating or neglecting the specific roles of microorganisms in Hg methylation within paddy soils. In this study, active Hg-methylating microorganisms in paddy soils were identified using a combination of DNA-SIP, Hg isotope labelling, and Hg methylation gene sequencing techniques. Our findings revealed that <em>Geobacter</em> and <em>Anaerolinea</em> are pivotal active Hg-methylating microorganisms across a contamination gradient in paddy soils. Transcriptomic analysis of soils from major rice-producing provinces in China confirmed the widespread and synergistic involvement of these microorganisms. Microbial incubation further validated their interaction significantly enhances Hg methylation, with Me<sup>198</sup>Hg concentrations increasing 2.8-fold compared to <em>Geobacter</em> alone and 5.2-fold compared to <em>Anaerolinea</em> alone. These findings enhance our understanding of microbial Hg methylation in paddy soils, providing critical insights for accurately predicting soil MeHg load, rice grain MeHg contamination, and human MeHg exposure risks.\",\"PeriodicalId\":12,\"journal\":{\"name\":\"ACS Chemical Health & Safety\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Health & Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.136481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Health & Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Key active mercury methylating microorganisms and their synergistic effects on methylmercury production in paddy soils
Rice contamination with neurotoxic methylmercury (MeHg) from paddy soils is an escalating global concern. Identifying the microorganisms responsible for mercury (Hg) methylation in these soils is essential for controlling Hg contamination in the food chain and mitigating health impacts. Current research often focuses on total Hg-methylating microorganisms, overlooking the contributions of active ones, which can lead to either overestimating or neglecting the specific roles of microorganisms in Hg methylation within paddy soils. In this study, active Hg-methylating microorganisms in paddy soils were identified using a combination of DNA-SIP, Hg isotope labelling, and Hg methylation gene sequencing techniques. Our findings revealed that Geobacter and Anaerolinea are pivotal active Hg-methylating microorganisms across a contamination gradient in paddy soils. Transcriptomic analysis of soils from major rice-producing provinces in China confirmed the widespread and synergistic involvement of these microorganisms. Microbial incubation further validated their interaction significantly enhances Hg methylation, with Me198Hg concentrations increasing 2.8-fold compared to Geobacter alone and 5.2-fold compared to Anaerolinea alone. These findings enhance our understanding of microbial Hg methylation in paddy soils, providing critical insights for accurately predicting soil MeHg load, rice grain MeHg contamination, and human MeHg exposure risks.
期刊介绍:
The Journal of Chemical Health and Safety focuses on news, information, and ideas relating to issues and advances in chemical health and safety. The Journal of Chemical Health and Safety covers up-to-the minute, in-depth views of safety issues ranging from OSHA and EPA regulations to the safe handling of hazardous waste, from the latest innovations in effective chemical hygiene practices to the courts'' most recent rulings on safety-related lawsuits. The Journal of Chemical Health and Safety presents real-world information that health, safety and environmental professionals and others responsible for the safety of their workplaces can put to use right away, identifying potential and developing safety concerns before they do real harm.