Xiaguo Wei , Shuqiong Kong , Dawei Cai , Bing Bai , Ruiqi Liu , Yiyi Chen , Jie Chen , Zhihao Yi
{"title":"水稻田系统孔隙水预测镉生物利用率的界面机制","authors":"Xiaguo Wei , Shuqiong Kong , Dawei Cai , Bing Bai , Ruiqi Liu , Yiyi Chen , Jie Chen , Zhihao Yi","doi":"10.1016/j.jhazmat.2024.136453","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium (Cd) contamination poses a significant threat to human health. Predicting the risk of Cd in rice grains is challenging due to the heterogeneity and complexity of bioavailable Cd in paddy soils. We proposed that porewater during the grain-filling period can effectively predict Cd bioavailability in rice (R<sup>2</sup> > 0.5, p < 0.05). The prediction mechanism was elucidated through soil-porewater interface characterization analysis and DFT calculations. Key factors determining Cd bioavailability included Cd<sup>2+</sup> and SO<sub>4</sub><sup>2−</sup> concentration, pH, and ORP of porewater, with pH showing the highest correlation. As porewater pH increased from 5 to 9, typical mineral surfaces gradually deprotonated and formed complexation bonds {<img>SOCd<sup>+</sup>} instead of {<img>SOH} or {<img>SOH<sub>2</sub><sup>+</sup>}. Additionally, the complexation energy between montmorillonite and Cd was 1.57–1.78 eV higher than that between goethite and Cd, while the protonation activation energy barrier on montmorillonite was 1.33–1.52 eV lower than on goethite. Therefore, {H<sup>+</sup>} concentration in porewater had the potential to quantify {<img>SOCd<sup>+</sup>} content and binding capacity, aiding Cd bioavailability prediction. This study outlines the mechanism of predicting heavy metal health risks in rice grains through porewater and offers a potential regulation approach for agricultural product safety.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"481 ","pages":"Article 136453"},"PeriodicalIF":12.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface mechanism of Cd bioavailability by porewater prediction in paddy field system\",\"authors\":\"Xiaguo Wei , Shuqiong Kong , Dawei Cai , Bing Bai , Ruiqi Liu , Yiyi Chen , Jie Chen , Zhihao Yi\",\"doi\":\"10.1016/j.jhazmat.2024.136453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cadmium (Cd) contamination poses a significant threat to human health. Predicting the risk of Cd in rice grains is challenging due to the heterogeneity and complexity of bioavailable Cd in paddy soils. We proposed that porewater during the grain-filling period can effectively predict Cd bioavailability in rice (R<sup>2</sup> > 0.5, p < 0.05). The prediction mechanism was elucidated through soil-porewater interface characterization analysis and DFT calculations. Key factors determining Cd bioavailability included Cd<sup>2+</sup> and SO<sub>4</sub><sup>2−</sup> concentration, pH, and ORP of porewater, with pH showing the highest correlation. As porewater pH increased from 5 to 9, typical mineral surfaces gradually deprotonated and formed complexation bonds {<img>SOCd<sup>+</sup>} instead of {<img>SOH} or {<img>SOH<sub>2</sub><sup>+</sup>}. Additionally, the complexation energy between montmorillonite and Cd was 1.57–1.78 eV higher than that between goethite and Cd, while the protonation activation energy barrier on montmorillonite was 1.33–1.52 eV lower than on goethite. Therefore, {H<sup>+</sup>} concentration in porewater had the potential to quantify {<img>SOCd<sup>+</sup>} content and binding capacity, aiding Cd bioavailability prediction. This study outlines the mechanism of predicting heavy metal health risks in rice grains through porewater and offers a potential regulation approach for agricultural product safety.</div></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"481 \",\"pages\":\"Article 136453\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389424030322\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389424030322","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Interface mechanism of Cd bioavailability by porewater prediction in paddy field system
Cadmium (Cd) contamination poses a significant threat to human health. Predicting the risk of Cd in rice grains is challenging due to the heterogeneity and complexity of bioavailable Cd in paddy soils. We proposed that porewater during the grain-filling period can effectively predict Cd bioavailability in rice (R2 > 0.5, p < 0.05). The prediction mechanism was elucidated through soil-porewater interface characterization analysis and DFT calculations. Key factors determining Cd bioavailability included Cd2+ and SO42− concentration, pH, and ORP of porewater, with pH showing the highest correlation. As porewater pH increased from 5 to 9, typical mineral surfaces gradually deprotonated and formed complexation bonds {SOCd+} instead of {SOH} or {SOH2+}. Additionally, the complexation energy between montmorillonite and Cd was 1.57–1.78 eV higher than that between goethite and Cd, while the protonation activation energy barrier on montmorillonite was 1.33–1.52 eV lower than on goethite. Therefore, {H+} concentration in porewater had the potential to quantify {SOCd+} content and binding capacity, aiding Cd bioavailability prediction. This study outlines the mechanism of predicting heavy metal health risks in rice grains through porewater and offers a potential regulation approach for agricultural product safety.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.