在混合机器学习模型下推导随机土壤强度参数的 GSD 驱动方法

IF 4 2区 农林科学 Q2 SOIL SCIENCE
Hu Jiang, Yong Li, Qiang Zou, Jun Zhang, Junfang Cui, Jianyi Cheng, Bin Zhou, Siyu Chen, Wentao Zhou, Hongkun Yao
{"title":"在混合机器学习模型下推导随机土壤强度参数的 GSD 驱动方法","authors":"Hu Jiang,&nbsp;Yong Li,&nbsp;Qiang Zou,&nbsp;Jun Zhang,&nbsp;Junfang Cui,&nbsp;Jianyi Cheng,&nbsp;Bin Zhou,&nbsp;Siyu Chen,&nbsp;Wentao Zhou,&nbsp;Hongkun Yao","doi":"10.1111/ejss.70009","DOIUrl":null,"url":null,"abstract":"<p>The quantification of soil strength parameters is a crucial prerequisite for constructing physical models related to hydro-geophysical processes. However, due to ignoring soil spatial variability at different scales, traditional parameter assignment strategies, such as assigning values depending on land use classification or other classification systems, as well as those extrapolation and interpolation methods, are insufficient for physical process modelling. This work addressed this deficiency by proposing a method to derive stochastic soil strength parameters under hybrid machine learning (ML) models, taking into account the grain-size distribution (GSD) of soil with scaling invariance. The nonlinear connection between GSD parameters (derived from GSD curves, such as <i>μ</i> and <i>D</i><sub>c</sub>), moisture content, and soil shear strength parameters was fitted by the suggested hybrid ML model. An analysis of a case study revealed that: (i) the Multi-layer Perceptron optimized by the African Vulture Optimization Algorithm (AVOA) algorithm performs the best and can estimate the shear strength parameters of soil mass on vegetated slopes; (ii) all the selected ML models showed significant improvements in predictive performance after optimization with the AVOA, with <i>R</i><sup>2</sup> scores increasing by 24.72% for Support Vector Regressor, 34.04% for eXtreme Gradient Boosting, and 35.53% for Multi-layer Perceptron; and (iii) soil cohesion has an increasing relationship with the GSD parameter <i>μ</i>, while soil internal friction angle has a negative correlation with the grain-size parameter <i>D</i><sub>c</sub>. The proposed methodology can give predictions of soil shear strength distribution parameters, providing parameter support for the physical modelling of surface process dynamics.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 6","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A GSD-driven approach to deriving stochastic soil strength parameters under hybrid machine learning models\",\"authors\":\"Hu Jiang,&nbsp;Yong Li,&nbsp;Qiang Zou,&nbsp;Jun Zhang,&nbsp;Junfang Cui,&nbsp;Jianyi Cheng,&nbsp;Bin Zhou,&nbsp;Siyu Chen,&nbsp;Wentao Zhou,&nbsp;Hongkun Yao\",\"doi\":\"10.1111/ejss.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The quantification of soil strength parameters is a crucial prerequisite for constructing physical models related to hydro-geophysical processes. However, due to ignoring soil spatial variability at different scales, traditional parameter assignment strategies, such as assigning values depending on land use classification or other classification systems, as well as those extrapolation and interpolation methods, are insufficient for physical process modelling. This work addressed this deficiency by proposing a method to derive stochastic soil strength parameters under hybrid machine learning (ML) models, taking into account the grain-size distribution (GSD) of soil with scaling invariance. The nonlinear connection between GSD parameters (derived from GSD curves, such as <i>μ</i> and <i>D</i><sub>c</sub>), moisture content, and soil shear strength parameters was fitted by the suggested hybrid ML model. An analysis of a case study revealed that: (i) the Multi-layer Perceptron optimized by the African Vulture Optimization Algorithm (AVOA) algorithm performs the best and can estimate the shear strength parameters of soil mass on vegetated slopes; (ii) all the selected ML models showed significant improvements in predictive performance after optimization with the AVOA, with <i>R</i><sup>2</sup> scores increasing by 24.72% for Support Vector Regressor, 34.04% for eXtreme Gradient Boosting, and 35.53% for Multi-layer Perceptron; and (iii) soil cohesion has an increasing relationship with the GSD parameter <i>μ</i>, while soil internal friction angle has a negative correlation with the grain-size parameter <i>D</i><sub>c</sub>. The proposed methodology can give predictions of soil shear strength distribution parameters, providing parameter support for the physical modelling of surface process dynamics.</p>\",\"PeriodicalId\":12043,\"journal\":{\"name\":\"European Journal of Soil Science\",\"volume\":\"75 6\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70009\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70009","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

土壤强度参数的量化是构建与水文地球物理过程相关的物理模型的重要前提。然而,由于忽略了不同尺度的土壤空间变异性,传统的参数赋值策略,如根据土地利用分类或其他分类系统赋值,以及那些外推法和内插法,都不足以用于物理过程建模。本研究针对这一不足,提出了一种在混合机器学习(ML)模型下推导随机土壤强度参数的方法,其中考虑到了具有比例不变性的土壤粒度分布(GSD)。建议的混合 ML 模型拟合了 GSD 参数(从 GSD 曲线得出,如 μ 和 Dc)、含水量和土壤抗剪强度参数之间的非线性联系。案例研究分析表明(i) 经非洲秃鹫优化算法(AVOA)优化的多层感知器性能最佳,可以估算植被边坡土体的剪切强度参数;(ii) 经 AVOA 优化后,所有选定的 ML 模型的预测性能都有显著提高,R2 分数提高了 24.(iii) 土壤内聚力与 GSD 参数 μ 呈递增关系,而土壤内摩擦角与粒度参数 Dc 呈负相关关系。所提出的方法可预测土壤剪切强度分布参数,为地表过程动力学物理建模提供参数支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GSD-driven approach to deriving stochastic soil strength parameters under hybrid machine learning models

The quantification of soil strength parameters is a crucial prerequisite for constructing physical models related to hydro-geophysical processes. However, due to ignoring soil spatial variability at different scales, traditional parameter assignment strategies, such as assigning values depending on land use classification or other classification systems, as well as those extrapolation and interpolation methods, are insufficient for physical process modelling. This work addressed this deficiency by proposing a method to derive stochastic soil strength parameters under hybrid machine learning (ML) models, taking into account the grain-size distribution (GSD) of soil with scaling invariance. The nonlinear connection between GSD parameters (derived from GSD curves, such as μ and Dc), moisture content, and soil shear strength parameters was fitted by the suggested hybrid ML model. An analysis of a case study revealed that: (i) the Multi-layer Perceptron optimized by the African Vulture Optimization Algorithm (AVOA) algorithm performs the best and can estimate the shear strength parameters of soil mass on vegetated slopes; (ii) all the selected ML models showed significant improvements in predictive performance after optimization with the AVOA, with R2 scores increasing by 24.72% for Support Vector Regressor, 34.04% for eXtreme Gradient Boosting, and 35.53% for Multi-layer Perceptron; and (iii) soil cohesion has an increasing relationship with the GSD parameter μ, while soil internal friction angle has a negative correlation with the grain-size parameter Dc. The proposed methodology can give predictions of soil shear strength distribution parameters, providing parameter support for the physical modelling of surface process dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Soil Science
European Journal of Soil Science 农林科学-土壤科学
CiteScore
8.20
自引率
4.80%
发文量
117
审稿时长
5 months
期刊介绍: The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信