J -F Trontin, M D Sow, A Delaunay, I Modesto, C Teyssier, I Reymond, F Canlet, N Boizot, C Le Metté, A Gibert, C Chaparro, C Daviaud, J Tost, C Miguel, M -A Lelu-Walter, S Maury
{"title":"2 年树龄的海洋松树在体细胞胚胎成熟过程中对温度的表观遗传记忆","authors":"J -F Trontin, M D Sow, A Delaunay, I Modesto, C Teyssier, I Reymond, F Canlet, N Boizot, C Le Metté, A Gibert, C Chaparro, C Daviaud, J Tost, C Miguel, M -A Lelu-Walter, S Maury","doi":"10.1093/plphys/kiae600","DOIUrl":null,"url":null,"abstract":"Embryogenesis is a brief but potentially critical phase in the tree life cycle for adaptive phenotypic plasticity. Using somatic embryogenesis in maritime pine (Pinus pinaster Ait.), we found that temperature during the maturation phase affects embryo development and post-embryonic tree growth for up to three years. We examined whether this somatic stress memory could stem from temperature- and/or development-induced changes in DNA methylation. For this, we developed a 200 Mb custom sequence capture bisulfite analysis of genes and promoters to identify differentially methylated cytosines (DMCs) between temperature treatments (18, 23, and 28°C) and developmental stages (immature and cotyledonary embryos, shoot apical meristem of 2-year-old plants) and investigate if these differences can be mitotically transmitted from embryonic to post-embryonic development (epigenetic memory). We revealed a high prevalence of temperature-induced DMCs in genes (8-14%) compared to promoters (less than 1%) in all 3 cytosine contexts. Developmental DMCs showed a comparable pattern but only in the CG context and with a strong trend towards hypomethylation, particularly in the promoters. A high percentage of DMCs induced by developmental transitions were found memorized in genes (up to 45-50%) and promoters (up to 90%). In contrast, temperature-induced memory was lower and confined to genes after both embryonic (up to 14%) and post-embryonic development (up to 8%). Using stringent criteria, we identified ten genes involved in defense responses and adaptation, embryo development, and chromatin regulation that are candidates for the establishment of a persistent epigenetic memory of temperature sensed during embryo maturation in maritime pine. Here, we provide evidence that DNA methylation marks established during the embryonic phase are transmitted to the post-embryonic plant development phase.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"62 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenetic memory of temperature sensed during somatic embryo maturation in 2-year-old maritime pine trees\",\"authors\":\"J -F Trontin, M D Sow, A Delaunay, I Modesto, C Teyssier, I Reymond, F Canlet, N Boizot, C Le Metté, A Gibert, C Chaparro, C Daviaud, J Tost, C Miguel, M -A Lelu-Walter, S Maury\",\"doi\":\"10.1093/plphys/kiae600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embryogenesis is a brief but potentially critical phase in the tree life cycle for adaptive phenotypic plasticity. Using somatic embryogenesis in maritime pine (Pinus pinaster Ait.), we found that temperature during the maturation phase affects embryo development and post-embryonic tree growth for up to three years. We examined whether this somatic stress memory could stem from temperature- and/or development-induced changes in DNA methylation. For this, we developed a 200 Mb custom sequence capture bisulfite analysis of genes and promoters to identify differentially methylated cytosines (DMCs) between temperature treatments (18, 23, and 28°C) and developmental stages (immature and cotyledonary embryos, shoot apical meristem of 2-year-old plants) and investigate if these differences can be mitotically transmitted from embryonic to post-embryonic development (epigenetic memory). We revealed a high prevalence of temperature-induced DMCs in genes (8-14%) compared to promoters (less than 1%) in all 3 cytosine contexts. Developmental DMCs showed a comparable pattern but only in the CG context and with a strong trend towards hypomethylation, particularly in the promoters. A high percentage of DMCs induced by developmental transitions were found memorized in genes (up to 45-50%) and promoters (up to 90%). In contrast, temperature-induced memory was lower and confined to genes after both embryonic (up to 14%) and post-embryonic development (up to 8%). Using stringent criteria, we identified ten genes involved in defense responses and adaptation, embryo development, and chromatin regulation that are candidates for the establishment of a persistent epigenetic memory of temperature sensed during embryo maturation in maritime pine. Here, we provide evidence that DNA methylation marks established during the embryonic phase are transmitted to the post-embryonic plant development phase.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae600\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae600","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Epigenetic memory of temperature sensed during somatic embryo maturation in 2-year-old maritime pine trees
Embryogenesis is a brief but potentially critical phase in the tree life cycle for adaptive phenotypic plasticity. Using somatic embryogenesis in maritime pine (Pinus pinaster Ait.), we found that temperature during the maturation phase affects embryo development and post-embryonic tree growth for up to three years. We examined whether this somatic stress memory could stem from temperature- and/or development-induced changes in DNA methylation. For this, we developed a 200 Mb custom sequence capture bisulfite analysis of genes and promoters to identify differentially methylated cytosines (DMCs) between temperature treatments (18, 23, and 28°C) and developmental stages (immature and cotyledonary embryos, shoot apical meristem of 2-year-old plants) and investigate if these differences can be mitotically transmitted from embryonic to post-embryonic development (epigenetic memory). We revealed a high prevalence of temperature-induced DMCs in genes (8-14%) compared to promoters (less than 1%) in all 3 cytosine contexts. Developmental DMCs showed a comparable pattern but only in the CG context and with a strong trend towards hypomethylation, particularly in the promoters. A high percentage of DMCs induced by developmental transitions were found memorized in genes (up to 45-50%) and promoters (up to 90%). In contrast, temperature-induced memory was lower and confined to genes after both embryonic (up to 14%) and post-embryonic development (up to 8%). Using stringent criteria, we identified ten genes involved in defense responses and adaptation, embryo development, and chromatin regulation that are candidates for the establishment of a persistent epigenetic memory of temperature sensed during embryo maturation in maritime pine. Here, we provide evidence that DNA methylation marks established during the embryonic phase are transmitted to the post-embryonic plant development phase.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.