Jiangong Liu, Youngryel Ryu, Xiangzhong Luo, Benjamin Dechant, Benjamin D. Stocker, Trevor F. Keenan, Pierre Gentine, Xing Li, Bolun Li, Sandy P. Harrison, Iain Colin Prentice
{"title":"树冠光合作用普遍热适应的证据","authors":"Jiangong Liu, Youngryel Ryu, Xiangzhong Luo, Benjamin Dechant, Benjamin D. Stocker, Trevor F. Keenan, Pierre Gentine, Xing Li, Bolun Li, Sandy P. Harrison, Iain Colin Prentice","doi":"10.1038/s41477-024-01846-1","DOIUrl":null,"url":null,"abstract":"Plants acclimate to temperature by adjusting their photosynthetic capacity over weeks to months. However, most evidence for photosynthetic acclimation derives from leaf-scale experiments. Here we address the scarcity of evidence for canopy-scale photosynthetic acclimation by examining the correlation between maximum photosynthetic rates (Amax,2,000) and growth temperature ( $$\\overline{{T}_{\\rm{air}}}$$ ) across a range of concurrent temperatures and canopy foliage quantity, using data from >200 eddy covariance sites. We detect widespread thermal acclimation of canopy-scale photosynthesis, demonstrated by enhanced Amax,2,000 under higher $$\\overline{{T}_{\\rm{air}}}$$ , across flux sites with adequate water availability. A 14-day period is identified as the most relevant timescale for acclimation across all sites, with a range of 12–25 days for different plant functional types. The mean apparent thermal acclimation rate across all ecosystems is 0.41 (−0.38–1.04 for 5th–95th percentile range) µmol m−2 s−1 °C−1, with croplands showing the largest acclimation rates and grasslands the lowest. Incorporating an optimality-based prediction of leaf photosynthetic capacities into a biochemical photosynthesis model is shown to improve the representation of thermal acclimation. Our results underscore the critical need for enhanced understanding and modelling of canopy-scale photosynthetic capacity to accurately predict plant responses to warmer growing seasons. Analysis of the FLUXNET2015 dataset provides observational evidence for widespread thermal acclimation of canopy-scale photosynthesis and its timescales across diverse biomes, improving its representation in land surface models.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1919-1927"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01846-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Evidence for widespread thermal acclimation of canopy photosynthesis\",\"authors\":\"Jiangong Liu, Youngryel Ryu, Xiangzhong Luo, Benjamin Dechant, Benjamin D. Stocker, Trevor F. Keenan, Pierre Gentine, Xing Li, Bolun Li, Sandy P. Harrison, Iain Colin Prentice\",\"doi\":\"10.1038/s41477-024-01846-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plants acclimate to temperature by adjusting their photosynthetic capacity over weeks to months. However, most evidence for photosynthetic acclimation derives from leaf-scale experiments. Here we address the scarcity of evidence for canopy-scale photosynthetic acclimation by examining the correlation between maximum photosynthetic rates (Amax,2,000) and growth temperature ( $$\\\\overline{{T}_{\\\\rm{air}}}$$ ) across a range of concurrent temperatures and canopy foliage quantity, using data from >200 eddy covariance sites. We detect widespread thermal acclimation of canopy-scale photosynthesis, demonstrated by enhanced Amax,2,000 under higher $$\\\\overline{{T}_{\\\\rm{air}}}$$ , across flux sites with adequate water availability. A 14-day period is identified as the most relevant timescale for acclimation across all sites, with a range of 12–25 days for different plant functional types. The mean apparent thermal acclimation rate across all ecosystems is 0.41 (−0.38–1.04 for 5th–95th percentile range) µmol m−2 s−1 °C−1, with croplands showing the largest acclimation rates and grasslands the lowest. Incorporating an optimality-based prediction of leaf photosynthetic capacities into a biochemical photosynthesis model is shown to improve the representation of thermal acclimation. Our results underscore the critical need for enhanced understanding and modelling of canopy-scale photosynthetic capacity to accurately predict plant responses to warmer growing seasons. Analysis of the FLUXNET2015 dataset provides observational evidence for widespread thermal acclimation of canopy-scale photosynthesis and its timescales across diverse biomes, improving its representation in land surface models.\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":\"10 12\",\"pages\":\"1919-1927\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41477-024-01846-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41477-024-01846-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01846-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Evidence for widespread thermal acclimation of canopy photosynthesis
Plants acclimate to temperature by adjusting their photosynthetic capacity over weeks to months. However, most evidence for photosynthetic acclimation derives from leaf-scale experiments. Here we address the scarcity of evidence for canopy-scale photosynthetic acclimation by examining the correlation between maximum photosynthetic rates (Amax,2,000) and growth temperature ( $$\overline{{T}_{\rm{air}}}$$ ) across a range of concurrent temperatures and canopy foliage quantity, using data from >200 eddy covariance sites. We detect widespread thermal acclimation of canopy-scale photosynthesis, demonstrated by enhanced Amax,2,000 under higher $$\overline{{T}_{\rm{air}}}$$ , across flux sites with adequate water availability. A 14-day period is identified as the most relevant timescale for acclimation across all sites, with a range of 12–25 days for different plant functional types. The mean apparent thermal acclimation rate across all ecosystems is 0.41 (−0.38–1.04 for 5th–95th percentile range) µmol m−2 s−1 °C−1, with croplands showing the largest acclimation rates and grasslands the lowest. Incorporating an optimality-based prediction of leaf photosynthetic capacities into a biochemical photosynthesis model is shown to improve the representation of thermal acclimation. Our results underscore the critical need for enhanced understanding and modelling of canopy-scale photosynthetic capacity to accurately predict plant responses to warmer growing seasons. Analysis of the FLUXNET2015 dataset provides observational evidence for widespread thermal acclimation of canopy-scale photosynthesis and its timescales across diverse biomes, improving its representation in land surface models.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.