Xiuliang Yuan, Xi Chen, Friday Uchenna Ochege, Rafiq Hamdi, Hossein Tabari, Baofu Li, Bin He, Chi Zhang, Philippe De Maeyer, Geping Luo
{"title":"极端气候变暖导致全球陆地固碳能力减弱","authors":"Xiuliang Yuan, Xi Chen, Friday Uchenna Ochege, Rafiq Hamdi, Hossein Tabari, Baofu Li, Bin He, Chi Zhang, Philippe De Maeyer, Geping Luo","doi":"10.1038/s41559-024-02576-5","DOIUrl":null,"url":null,"abstract":"<p>The net ecosystem exchange (NEE), determining terrestrial carbon sequestration capacity, is strongly controlled by climate change and has exhibited substantial year-to-year fluctuations. How the increased frequency and intensity of warm extremes affect NEE variations remains unclear. Here, we combined multiple NEE datasets from atmospheric CO<sub>2</sub> inversions, Earth system models, eddy-covariance data-driven methods and climate datasets to show that the terrestrial carbon sequestration capacity is weakened during warm extreme occurrences over the past 40 years, primarily contributed by tropical regions (81% ± 48%). The underlying mechanism can be rooted in the overwhelmingly decreased trend of gross primary productivity compared with terrestrial ecosystem respiration. Additionally, the weakened terrestrial carbon sequestration capacity is mainly driven by the transition from temperature or soil moisture control to vapour pressure deficit control, which is associated with the increasing intensity of warm extremes. Our findings suggest that warm extremes threaten the global carbon sequestration function of terrestrial ecosystems. Therefore, more attention should be given to the evolution of the increasing intensity of warm extremes in future climate projections.</p>","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"2 1","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakening of global terrestrial carbon sequestration capacity under increasing intensity of warm extremes\",\"authors\":\"Xiuliang Yuan, Xi Chen, Friday Uchenna Ochege, Rafiq Hamdi, Hossein Tabari, Baofu Li, Bin He, Chi Zhang, Philippe De Maeyer, Geping Luo\",\"doi\":\"10.1038/s41559-024-02576-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The net ecosystem exchange (NEE), determining terrestrial carbon sequestration capacity, is strongly controlled by climate change and has exhibited substantial year-to-year fluctuations. How the increased frequency and intensity of warm extremes affect NEE variations remains unclear. Here, we combined multiple NEE datasets from atmospheric CO<sub>2</sub> inversions, Earth system models, eddy-covariance data-driven methods and climate datasets to show that the terrestrial carbon sequestration capacity is weakened during warm extreme occurrences over the past 40 years, primarily contributed by tropical regions (81% ± 48%). The underlying mechanism can be rooted in the overwhelmingly decreased trend of gross primary productivity compared with terrestrial ecosystem respiration. Additionally, the weakened terrestrial carbon sequestration capacity is mainly driven by the transition from temperature or soil moisture control to vapour pressure deficit control, which is associated with the increasing intensity of warm extremes. Our findings suggest that warm extremes threaten the global carbon sequestration function of terrestrial ecosystems. Therefore, more attention should be given to the evolution of the increasing intensity of warm extremes in future climate projections.</p>\",\"PeriodicalId\":18835,\"journal\":{\"name\":\"Nature ecology & evolution\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41559-024-02576-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41559-024-02576-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Weakening of global terrestrial carbon sequestration capacity under increasing intensity of warm extremes
The net ecosystem exchange (NEE), determining terrestrial carbon sequestration capacity, is strongly controlled by climate change and has exhibited substantial year-to-year fluctuations. How the increased frequency and intensity of warm extremes affect NEE variations remains unclear. Here, we combined multiple NEE datasets from atmospheric CO2 inversions, Earth system models, eddy-covariance data-driven methods and climate datasets to show that the terrestrial carbon sequestration capacity is weakened during warm extreme occurrences over the past 40 years, primarily contributed by tropical regions (81% ± 48%). The underlying mechanism can be rooted in the overwhelmingly decreased trend of gross primary productivity compared with terrestrial ecosystem respiration. Additionally, the weakened terrestrial carbon sequestration capacity is mainly driven by the transition from temperature or soil moisture control to vapour pressure deficit control, which is associated with the increasing intensity of warm extremes. Our findings suggest that warm extremes threaten the global carbon sequestration function of terrestrial ecosystems. Therefore, more attention should be given to the evolution of the increasing intensity of warm extremes in future climate projections.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.