{"title":"水稻黄矮病病原菌基因组编码的病毒效应子参与致病过程","authors":"Shuai Zhang, Peng Gan1, Huiting Xie, Chuan Li, Tianxin Tang, Qiong Hu, Zhihong Zhu, Zhongkai Zhang, Jisen Zhang, Yongsheng Zhu, Qun Hu, Jie Hu, Hongxin Guan, Shanshan Zhao, Jianguo Wu","doi":"10.1093/plphys/kiae601","DOIUrl":null,"url":null,"abstract":"Bacteria-like phytoplasmas alternate between plant and insect hosts, secreting proteins that disrupt host development. In this study, we sequenced the complete genome of ‘Candidatus Phytoplasma oryzae’ strain HN2022, associated with rice yellow dwarf (RYD) disease, using PacBio HiFi technology. The strain was classified within the 16Sr XI-B subgroup. Through SignalP v5.0 for prediction and subsequent expression analysis of secreted proteins in Nicotiana benthamiana and rice (Oryza sativa L.), we identified the key virulence effector proteins RY348 and RY378. RY348, a homologue of Secreted Aster Yellows Phytoplasma Effector 54 (SAP54), targets and degrades the MADS-box transcription factors MADS1 and MADS15, causing pollen sterility. Meanwhile, RY378 impacts the strigolactone and auxin signaling pathways, substantially increasing tillering. These findings offer insights into the interactions between plants and phytoplasmas.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"150 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virulence effectors encoded in the rice yellow dwarf phytoplasma genome participate in pathogenesis\",\"authors\":\"Shuai Zhang, Peng Gan1, Huiting Xie, Chuan Li, Tianxin Tang, Qiong Hu, Zhihong Zhu, Zhongkai Zhang, Jisen Zhang, Yongsheng Zhu, Qun Hu, Jie Hu, Hongxin Guan, Shanshan Zhao, Jianguo Wu\",\"doi\":\"10.1093/plphys/kiae601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacteria-like phytoplasmas alternate between plant and insect hosts, secreting proteins that disrupt host development. In this study, we sequenced the complete genome of ‘Candidatus Phytoplasma oryzae’ strain HN2022, associated with rice yellow dwarf (RYD) disease, using PacBio HiFi technology. The strain was classified within the 16Sr XI-B subgroup. Through SignalP v5.0 for prediction and subsequent expression analysis of secreted proteins in Nicotiana benthamiana and rice (Oryza sativa L.), we identified the key virulence effector proteins RY348 and RY378. RY348, a homologue of Secreted Aster Yellows Phytoplasma Effector 54 (SAP54), targets and degrades the MADS-box transcription factors MADS1 and MADS15, causing pollen sterility. Meanwhile, RY378 impacts the strigolactone and auxin signaling pathways, substantially increasing tillering. These findings offer insights into the interactions between plants and phytoplasmas.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae601\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae601","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Virulence effectors encoded in the rice yellow dwarf phytoplasma genome participate in pathogenesis
Bacteria-like phytoplasmas alternate between plant and insect hosts, secreting proteins that disrupt host development. In this study, we sequenced the complete genome of ‘Candidatus Phytoplasma oryzae’ strain HN2022, associated with rice yellow dwarf (RYD) disease, using PacBio HiFi technology. The strain was classified within the 16Sr XI-B subgroup. Through SignalP v5.0 for prediction and subsequent expression analysis of secreted proteins in Nicotiana benthamiana and rice (Oryza sativa L.), we identified the key virulence effector proteins RY348 and RY378. RY348, a homologue of Secreted Aster Yellows Phytoplasma Effector 54 (SAP54), targets and degrades the MADS-box transcription factors MADS1 and MADS15, causing pollen sterility. Meanwhile, RY378 impacts the strigolactone and auxin signaling pathways, substantially increasing tillering. These findings offer insights into the interactions between plants and phytoplasmas.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.