Sabyasachi Dey, Gregor Leander, Nitin Kumar Sharma
{"title":"改进对减圆 Salsa20 的密钥恢复攻击","authors":"Sabyasachi Dey, Gregor Leander, Nitin Kumar Sharma","doi":"10.1007/s10623-024-01522-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present an improved attack on the stream cipher Salsa20. Our improvements are based on two technical contributions. First, we make use of a distribution of a linear combination of several random variables that are derived from different differentials and explain how to exploit this in order to improve the attack complexity. Secondly, we study and exploit how to choose the actual value for so-called probabilistic neutral bits optimally. Because of the limited influence of these key bits on the computation, in the usual attack approach, these are fixed to a constant value, often zero for simplicity. As we will show, despite the fact that their influence is limited, the constant can be chosen in significantly better ways, and intriguingly, zero is the worst choice. Using this, we propose the first-ever attack on 7.5-round of the 128-bit key version of Salsa20. Also, we provide improvements in the attack against the 8-round of the 256-bit key version of Salsa20 and the 7-round of the 128-bit key version of Salsa20.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved key recovery attacks on reduced-round Salsa20\",\"authors\":\"Sabyasachi Dey, Gregor Leander, Nitin Kumar Sharma\",\"doi\":\"10.1007/s10623-024-01522-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present an improved attack on the stream cipher Salsa20. Our improvements are based on two technical contributions. First, we make use of a distribution of a linear combination of several random variables that are derived from different differentials and explain how to exploit this in order to improve the attack complexity. Secondly, we study and exploit how to choose the actual value for so-called probabilistic neutral bits optimally. Because of the limited influence of these key bits on the computation, in the usual attack approach, these are fixed to a constant value, often zero for simplicity. As we will show, despite the fact that their influence is limited, the constant can be chosen in significantly better ways, and intriguingly, zero is the worst choice. Using this, we propose the first-ever attack on 7.5-round of the 128-bit key version of Salsa20. Also, we provide improvements in the attack against the 8-round of the 256-bit key version of Salsa20 and the 7-round of the 128-bit key version of Salsa20.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01522-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01522-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Improved key recovery attacks on reduced-round Salsa20
In this paper, we present an improved attack on the stream cipher Salsa20. Our improvements are based on two technical contributions. First, we make use of a distribution of a linear combination of several random variables that are derived from different differentials and explain how to exploit this in order to improve the attack complexity. Secondly, we study and exploit how to choose the actual value for so-called probabilistic neutral bits optimally. Because of the limited influence of these key bits on the computation, in the usual attack approach, these are fixed to a constant value, often zero for simplicity. As we will show, despite the fact that their influence is limited, the constant can be chosen in significantly better ways, and intriguingly, zero is the worst choice. Using this, we propose the first-ever attack on 7.5-round of the 128-bit key version of Salsa20. Also, we provide improvements in the attack against the 8-round of the 256-bit key version of Salsa20 and the 7-round of the 128-bit key version of Salsa20.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.