Ish Gupta, Chaitanya Afle, K G Arun, Ananya Bandopadhyay, Masha Baryakhtar, Sylvia Biscoveanu, Ssohrab Borhanian, Floor Broekgaarden, Alessandra Corsi, Arnab Dhani, Matthew Evans, Evan D Hall, Otto A Hannuksela, Keisi Kacanja, Rahul Kashyap, Sanika Khadkikar, Kevin Kuns, Tjonnie G F Li, Andrew L Miller, Alexander Harvey Nitz, Benjamin J Owen, Cristiano Palomba, Anthony Pearce, Hemantakumar Phurailatpam, Binod Rajbhandari, Jocelyn Read, Joseph D Romano, Bangalore S Sathyaprakash, David H Shoemaker, Divya Singh, Salvatore Vitale, Lisa Barsotti, Emanuele Berti, Craig Cahillane, Hsin-Yu Chen, Peter Fritschel, Carl-Johan Haster, Philippe Landry, Geoffrey Lovelace, David McClelland, Bram J J Slagmolen, Joshua R Smith, Marcelle Soares-Santos, Ling Sun, David Tanner, Hiro Yamamoto, Michael Zucker
{"title":"描述引力波探测器网络:从 A ♯ 到宇宙探测器","authors":"Ish Gupta, Chaitanya Afle, K G Arun, Ananya Bandopadhyay, Masha Baryakhtar, Sylvia Biscoveanu, Ssohrab Borhanian, Floor Broekgaarden, Alessandra Corsi, Arnab Dhani, Matthew Evans, Evan D Hall, Otto A Hannuksela, Keisi Kacanja, Rahul Kashyap, Sanika Khadkikar, Kevin Kuns, Tjonnie G F Li, Andrew L Miller, Alexander Harvey Nitz, Benjamin J Owen, Cristiano Palomba, Anthony Pearce, Hemantakumar Phurailatpam, Binod Rajbhandari, Jocelyn Read, Joseph D Romano, Bangalore S Sathyaprakash, David H Shoemaker, Divya Singh, Salvatore Vitale, Lisa Barsotti, Emanuele Berti, Craig Cahillane, Hsin-Yu Chen, Peter Fritschel, Carl-Johan Haster, Philippe Landry, Geoffrey Lovelace, David McClelland, Bram J J Slagmolen, Joshua R Smith, Marcelle Soares-Santos, Ling Sun, David Tanner, Hiro Yamamoto, Michael Zucker","doi":"10.1088/1361-6382/ad7b99","DOIUrl":null,"url":null,"abstract":"Gravitational-wave observations by the laser interferometer gravitational-wave observatory (LIGO) and Virgo have provided us a new tool to explore the Universe on all scales from nuclear physics to the cosmos and have the massive potential to further impact fundamental physics, astrophysics, and cosmology for decades to come. In this paper we have studied the science capabilities of a network of LIGO detectors when they reach their best possible sensitivity, called A<inline-formula>\n<tex-math><?CDATA $^\\sharp$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mo>♯</mml:mo></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"cqgad7b99ieqn2.gif\"></inline-graphic></inline-formula>, given the infrastructure in which they exist and a new generation of observatories that are factor of 10 to 100 times more sensitive (depending on the frequency), in particular a pair of L-shaped cosmic explorer (CE) observatories (one 40 km and one 20 km arm length) in the US and the triangular Einstein telescope with 10 km arms in Europe. We use a set of science metrics derived from the top priorities of several funding agencies to characterize the science capabilities of different networks. The presence of one or two A<inline-formula>\n<tex-math><?CDATA $^\\sharp$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mo>♯</mml:mo></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"cqgad7b99ieqn3.gif\"></inline-graphic></inline-formula> observatories in a network containing two or one next generation observatories, respectively, will provide good localization capabilities for facilitating multimessenger astronomy (MMA) and precision measurement of the Hubble parameter. Two CE observatories are indispensable for achieving precise localization of binary neutron star events, facilitating detection of electromagnetic counterparts and transforming MMA. Their combined operation is even more important in the detection and localization of high-redshift sources, such as binary neutron stars, beyond the star-formation peak, and primordial black hole mergers, which may occur roughly 100 million years after the Big Bang. The addition of the Einstein Telescope to a network of two CE observatories is critical for accomplishing all the identified science metrics including the nuclear equation of state, cosmological parameters, the growth of black holes through cosmic history, but also make new discoveries such as the presence of dark matter within or around neutron stars and black holes, continuous gravitational waves from rotating neutron stars, transient signals from supernovae, and the production of stellar-mass black holes in the early Universe. For most metrics the triple network of next generation terrestrial observatories are a factor 100 better than what can be accomplished by a network of three A<inline-formula>\n<tex-math><?CDATA $^\\sharp$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mo>♯</mml:mo></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"cqgad7b99ieqn4.gif\"></inline-graphic></inline-formula> observatories.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"38 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing gravitational wave detector networks: from A ♯ to cosmic explorer\",\"authors\":\"Ish Gupta, Chaitanya Afle, K G Arun, Ananya Bandopadhyay, Masha Baryakhtar, Sylvia Biscoveanu, Ssohrab Borhanian, Floor Broekgaarden, Alessandra Corsi, Arnab Dhani, Matthew Evans, Evan D Hall, Otto A Hannuksela, Keisi Kacanja, Rahul Kashyap, Sanika Khadkikar, Kevin Kuns, Tjonnie G F Li, Andrew L Miller, Alexander Harvey Nitz, Benjamin J Owen, Cristiano Palomba, Anthony Pearce, Hemantakumar Phurailatpam, Binod Rajbhandari, Jocelyn Read, Joseph D Romano, Bangalore S Sathyaprakash, David H Shoemaker, Divya Singh, Salvatore Vitale, Lisa Barsotti, Emanuele Berti, Craig Cahillane, Hsin-Yu Chen, Peter Fritschel, Carl-Johan Haster, Philippe Landry, Geoffrey Lovelace, David McClelland, Bram J J Slagmolen, Joshua R Smith, Marcelle Soares-Santos, Ling Sun, David Tanner, Hiro Yamamoto, Michael Zucker\",\"doi\":\"10.1088/1361-6382/ad7b99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravitational-wave observations by the laser interferometer gravitational-wave observatory (LIGO) and Virgo have provided us a new tool to explore the Universe on all scales from nuclear physics to the cosmos and have the massive potential to further impact fundamental physics, astrophysics, and cosmology for decades to come. In this paper we have studied the science capabilities of a network of LIGO detectors when they reach their best possible sensitivity, called A<inline-formula>\\n<tex-math><?CDATA $^\\\\sharp$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mo>♯</mml:mo></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"cqgad7b99ieqn2.gif\\\"></inline-graphic></inline-formula>, given the infrastructure in which they exist and a new generation of observatories that are factor of 10 to 100 times more sensitive (depending on the frequency), in particular a pair of L-shaped cosmic explorer (CE) observatories (one 40 km and one 20 km arm length) in the US and the triangular Einstein telescope with 10 km arms in Europe. We use a set of science metrics derived from the top priorities of several funding agencies to characterize the science capabilities of different networks. The presence of one or two A<inline-formula>\\n<tex-math><?CDATA $^\\\\sharp$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mo>♯</mml:mo></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"cqgad7b99ieqn3.gif\\\"></inline-graphic></inline-formula> observatories in a network containing two or one next generation observatories, respectively, will provide good localization capabilities for facilitating multimessenger astronomy (MMA) and precision measurement of the Hubble parameter. Two CE observatories are indispensable for achieving precise localization of binary neutron star events, facilitating detection of electromagnetic counterparts and transforming MMA. Their combined operation is even more important in the detection and localization of high-redshift sources, such as binary neutron stars, beyond the star-formation peak, and primordial black hole mergers, which may occur roughly 100 million years after the Big Bang. The addition of the Einstein Telescope to a network of two CE observatories is critical for accomplishing all the identified science metrics including the nuclear equation of state, cosmological parameters, the growth of black holes through cosmic history, but also make new discoveries such as the presence of dark matter within or around neutron stars and black holes, continuous gravitational waves from rotating neutron stars, transient signals from supernovae, and the production of stellar-mass black holes in the early Universe. For most metrics the triple network of next generation terrestrial observatories are a factor 100 better than what can be accomplished by a network of three A<inline-formula>\\n<tex-math><?CDATA $^\\\\sharp$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mo>♯</mml:mo></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"cqgad7b99ieqn4.gif\\\"></inline-graphic></inline-formula> observatories.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/ad7b99\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad7b99","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
激光干涉仪引力波天文台(LIGO)和室女座(Virgo)的引力波观测为我们提供了一种新的工具,用于探索从核物理到宇宙的各种尺度的宇宙,并具有在未来几十年进一步影响基础物理学、天体物理学和宇宙学的巨大潜力。在本文中,我们研究了 LIGO 探测器网络在达到最佳灵敏度(A♯)时的科学能力,考虑到它们现有的基础设施,以及灵敏度高出 10 到 100 倍(取决于频率)的新一代天文台,特别是美国的一对 L 形宇宙探索者(CE)天文台(一个 40 千米,一个 20 千米臂长)和欧洲的三角形爱因斯坦望远镜(10 千米臂长)。我们使用一套从多个资助机构的最高优先事项中得出的科学指标来描述不同网络的科学能力。在一个包含两个或一个下一代天文台的网络中,如果分别有一个或两个A♯天文台,就能为多信使天文学(MMA)和哈勃参数的精确测量提供良好的定位能力。要实现双中子星事件的精确定位,促进电磁对应物的探测和多信使天文学的转变,两个中子星观测站是必不可少的。它们的联合运行对于高红移源的探测和定位更为重要,如超越恒星形成峰值的双中子星和原始黑洞合并(可能发生在宇宙大爆炸后大约 1 亿年)。将爱因斯坦望远镜添加到由两个 CE 天文台组成的网络中,对于完成所有已确定的科学指标(包括核状态方程、宇宙学参数、黑洞在宇宙历史中的增长)至关重要,而且还能带来新的发现,如中子星和黑洞内部或周围暗物质的存在、来自旋转中子星的连续引力波、来自超新星的瞬态信号以及早期宇宙中恒星质量黑洞的产生。就大多数指标而言,下一代地面观测站的三重网络要比三个A♯级观测站网络所能达到的效果好100倍。
Characterizing gravitational wave detector networks: from A ♯ to cosmic explorer
Gravitational-wave observations by the laser interferometer gravitational-wave observatory (LIGO) and Virgo have provided us a new tool to explore the Universe on all scales from nuclear physics to the cosmos and have the massive potential to further impact fundamental physics, astrophysics, and cosmology for decades to come. In this paper we have studied the science capabilities of a network of LIGO detectors when they reach their best possible sensitivity, called A♯, given the infrastructure in which they exist and a new generation of observatories that are factor of 10 to 100 times more sensitive (depending on the frequency), in particular a pair of L-shaped cosmic explorer (CE) observatories (one 40 km and one 20 km arm length) in the US and the triangular Einstein telescope with 10 km arms in Europe. We use a set of science metrics derived from the top priorities of several funding agencies to characterize the science capabilities of different networks. The presence of one or two A♯ observatories in a network containing two or one next generation observatories, respectively, will provide good localization capabilities for facilitating multimessenger astronomy (MMA) and precision measurement of the Hubble parameter. Two CE observatories are indispensable for achieving precise localization of binary neutron star events, facilitating detection of electromagnetic counterparts and transforming MMA. Their combined operation is even more important in the detection and localization of high-redshift sources, such as binary neutron stars, beyond the star-formation peak, and primordial black hole mergers, which may occur roughly 100 million years after the Big Bang. The addition of the Einstein Telescope to a network of two CE observatories is critical for accomplishing all the identified science metrics including the nuclear equation of state, cosmological parameters, the growth of black holes through cosmic history, but also make new discoveries such as the presence of dark matter within or around neutron stars and black holes, continuous gravitational waves from rotating neutron stars, transient signals from supernovae, and the production of stellar-mass black holes in the early Universe. For most metrics the triple network of next generation terrestrial observatories are a factor 100 better than what can be accomplished by a network of three A♯ observatories.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.