求助PDF
{"title":"具有空间紧凑性的 SU(3) 杨-米尔斯理论中的新型一阶相变和临界点","authors":"Daisuke Fujii, Akihiro Iwanaka, Masakiyo Kitazawa, Daiki Suenaga","doi":"10.1103/physrevd.110.094016","DOIUrl":null,"url":null,"abstract":"We investigate the thermodynamics and phase structure of <mjx-container ctxtmenu_counter=\"60\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,7\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"0 8 7\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper S upper U left parenthesis 3 right parenthesis\" data-semantic-structure=\"(9 0 8 (7 1 6 (5 2 3 4)))\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"1,5\" data-semantic-content=\"6,1\" data-semantic- data-semantic-owns=\"1 6 5\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"3\" data-semantic-content=\"2,4\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"7\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> Yang-Mills theory on <mjx-container ctxtmenu_counter=\"61\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-role=\"multiplication\" data-semantic-speech=\"double struck upper T squared times double struck upper R squared\" data-semantic-structure=\"(7 (2 0 1) 3 (6 4 5))\" data-semantic-type=\"infixop\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝕋</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℝ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> in Euclidean spacetime in an effective-model approach. The model incorporates two Polyakov loops along two compactified directions as dynamical variables, and is constructed to reproduce thermodynamics on <mjx-container ctxtmenu_counter=\"62\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-role=\"multiplication\" data-semantic-speech=\"double struck upper T squared times double struck upper R squared\" data-semantic-structure=\"(7 (2 0 1) 3 (6 4 5))\" data-semantic-type=\"infixop\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝕋</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℝ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> measured on the lattice. The model analysis indicates the existence of a novel first-order phase transition on <mjx-container ctxtmenu_counter=\"63\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-role=\"multiplication\" data-semantic-speech=\"double struck upper T squared times double struck upper R squared\" data-semantic-structure=\"(7 (2 0 1) 3 (6 4 5))\" data-semantic-type=\"infixop\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝕋</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℝ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> in the deconfined phase, which terminates at critical points that should belong to the two-dimensional <mjx-container ctxtmenu_counter=\"64\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper Z 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑍</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.033em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> universality class. We argue that the interplay of the Polyakov loops induced by their cross-term in the Polyakov-loop potential is responsible for the manifestation of the first-order transition.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"8 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel first-order phase transition and critical points in SU(3) Yang-Mills theory with spatial compactification\",\"authors\":\"Daisuke Fujii, Akihiro Iwanaka, Masakiyo Kitazawa, Daiki Suenaga\",\"doi\":\"10.1103/physrevd.110.094016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the thermodynamics and phase structure of <mjx-container ctxtmenu_counter=\\\"60\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-owns=\\\"0 8 7\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper S upper U left parenthesis 3 right parenthesis\\\" data-semantic-structure=\\\"(9 0 8 (7 1 6 (5 2 3 4)))\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"1,5\\\" data-semantic-content=\\\"6,1\\\" data-semantic- data-semantic-owns=\\\"1 6 5\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2,4\\\" data-semantic- data-semantic-owns=\\\"2 3 4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> Yang-Mills theory on <mjx-container ctxtmenu_counter=\\\"61\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"2,6\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"2 3 6\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-speech=\\\"double struck upper T squared times double struck upper R squared\\\" data-semantic-structure=\\\"(7 (2 0 1) 3 (6 4 5))\\\" data-semantic-type=\\\"infixop\\\"><mjx-msup data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"superscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"double-struck\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝕋</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: 0.363em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-break size=\\\"3\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,×\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"4,5\\\" data-semantic- data-semantic-owns=\\\"4 5\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"numbersetletter\\\" data-semantic-type=\\\"superscript\\\" space=\\\"3\\\"><mjx-mi data-semantic-font=\\\"double-struck\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"numbersetletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℝ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: 0.363em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> in Euclidean spacetime in an effective-model approach. The model incorporates two Polyakov loops along two compactified directions as dynamical variables, and is constructed to reproduce thermodynamics on <mjx-container ctxtmenu_counter=\\\"62\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"2,6\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"2 3 6\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-speech=\\\"double struck upper T squared times double struck upper R squared\\\" data-semantic-structure=\\\"(7 (2 0 1) 3 (6 4 5))\\\" data-semantic-type=\\\"infixop\\\"><mjx-msup data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"superscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"double-struck\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝕋</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: 0.363em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-break size=\\\"3\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,×\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"4,5\\\" data-semantic- data-semantic-owns=\\\"4 5\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"numbersetletter\\\" data-semantic-type=\\\"superscript\\\" space=\\\"3\\\"><mjx-mi data-semantic-font=\\\"double-struck\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"numbersetletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℝ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: 0.363em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> measured on the lattice. The model analysis indicates the existence of a novel first-order phase transition on <mjx-container ctxtmenu_counter=\\\"63\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"2,6\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"2 3 6\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-speech=\\\"double struck upper T squared times double struck upper R squared\\\" data-semantic-structure=\\\"(7 (2 0 1) 3 (6 4 5))\\\" data-semantic-type=\\\"infixop\\\"><mjx-msup data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"superscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"double-struck\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝕋</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: 0.363em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-break size=\\\"3\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,×\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"4,5\\\" data-semantic- data-semantic-owns=\\\"4 5\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"numbersetletter\\\" data-semantic-type=\\\"superscript\\\" space=\\\"3\\\"><mjx-mi data-semantic-font=\\\"double-struck\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"numbersetletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℝ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: 0.363em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> in the deconfined phase, which terminates at critical points that should belong to the two-dimensional <mjx-container ctxtmenu_counter=\\\"64\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper Z 2\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑍</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em; margin-left: -0.033em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> universality class. We argue that the interplay of the Polyakov loops induced by their cross-term in the Polyakov-loop potential is responsible for the manifestation of the first-order transition.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.094016\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.094016","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
引用
批量引用