Ritesh Ghosh, Igor A. Shovkovy
求助PDF
{"title":"强磁场中热相对论等离子体的电导率","authors":"Ritesh Ghosh, Igor A. Shovkovy","doi":"10.1103/physrevd.110.096009","DOIUrl":null,"url":null,"abstract":"We employ first-principles quantum field theoretical methods to investigate the longitudinal and transverse electrical conductivities of a strongly magnetized hot quantum electrodynamics (QED) plasma at the leading order in coupling. The analysis employs the fermion damping rate in the Landau-level representation, calculated with full kinematics and exact amplitudes of one-to-two and two-to-one QED processes. In the relativistic regime, both conductivities exhibit an approximate scaling behavior described by <mjx-container ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(18 (5 0 (4 1 2 3)) 6 (17 7 16 (15 (10 8 9) (14 11 12 13))))\"><mjx-mrow data-semantic-children=\"5,17\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"5 6 17\" data-semantic-role=\"equality\" data-semantic-speech=\"sigma Subscript parallel to comma up tack Baseline equals upper T sigma overtilde Subscript parallel to comma up tack\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-parent=\"18\" data-semantic-role=\"greekletter\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜎</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow data-semantic-children=\"1,2,3\" data-semantic-content=\"1,2\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"5\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"4\" data-semantic-role=\"metric\" data-semantic-type=\"punctuation\"><mjx-c>∥</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"4\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"logic\" data-semantic-type=\"identifier\"><mjx-c>⊥</mjx-c></mjx-mo></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"18\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"7,15\" data-semantic-content=\"16\" data-semantic- data-semantic-owns=\"7 16 15\" data-semantic-parent=\"18\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑇</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"17\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"10,14\" data-semantic- data-semantic-owns=\"10 14\" data-semantic-parent=\"17\" data-semantic-role=\"greekletter\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mover data-semantic-children=\"8,9\" data-semantic- data-semantic-owns=\"8 9\" data-semantic-parent=\"15\" data-semantic-role=\"greekletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.102em; padding-left: 0.139em; margin-bottom: -0.533em;\"><mjx-mrow><mjx-mo data-semantic-annotation=\"accent:tilde\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\"><mjx-c>˜</mjx-c></mjx-mo></mjx-mrow></mjx-over><mjx-base><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜎</mjx-c></mjx-mi></mjx-mrow></mjx-base></mjx-mover></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow data-semantic-children=\"11,12,13\" data-semantic-content=\"11,12\" data-semantic- data-semantic-owns=\"11 12 13\" data-semantic-parent=\"15\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"14\" data-semantic-role=\"metric\" data-semantic-type=\"punctuation\"><mjx-c>∥</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"14\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"logic\" data-semantic-type=\"identifier\"><mjx-c>⊥</mjx-c></mjx-mo></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-math></mjx-container>, where <mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(7 (2 0 1) (6 3 4 5))\"><mjx-msub data-semantic-children=\"2,6\" data-semantic- data-semantic-owns=\"2 6\" data-semantic-role=\"greekletter\" data-semantic-speech=\"sigma overtilde Subscript parallel to comma up tack\" data-semantic-type=\"subscript\"><mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"greekletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.102em; padding-left: 0.33em; margin-bottom: -0.533em;\"><mjx-mo data-semantic-annotation=\"accent:tilde\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\" style=\"width: 0px; margin-left: -0.191em;\"><mjx-c>˜</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜎</mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow data-semantic-children=\"3,4,5\" data-semantic-content=\"3,4\" data-semantic- data-semantic-owns=\"3 4 5\" data-semantic-parent=\"7\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"6\" data-semantic-role=\"metric\" data-semantic-type=\"punctuation\"><mjx-c>∥</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"6\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"logic\" data-semantic-type=\"identifier\"><mjx-c>⊥</mjx-c></mjx-mo></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container> are functions of the dimensionless ratio <mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-children=\"10,7\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"10 4 7\" data-semantic-role=\"division\" data-semantic-speech=\"StartAbsoluteValue e upper B EndAbsoluteValue divided by upper T squared\" data-semantic-structure=\"(11 (10 0 (9 1 8 2) 3) 4 (7 5 6))\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"9\" data-semantic-content=\"0,3\" data-semantic- data-semantic-owns=\"0 9 3\" data-semantic-parent=\"11\" data-semantic-role=\"neutral\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" style=\"vertical-align: 0.007em;\"><mjx-c>|</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"1,2\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"1 8 2\" data-semantic-parent=\"10\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑒</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"10\" data-semantic-role=\"neutral\" data-semantic-type=\"fence\" style=\"vertical-align: 0.007em;\"><mjx-c>|</mjx-c></mjx-mo></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"11\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"5,6\" data-semantic- data-semantic-owns=\"5 6\" data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑇</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em; margin-left: 0.052em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> (with <mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper T\" data-semantic-type=\"identifier\"><mjx-c>𝑇</mjx-c></mjx-mi></mjx-math></mjx-container> denoting temperature and <mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper B\" data-semantic-type=\"identifier\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-math></mjx-container> magnetic field strength). We argue that the mechanisms for the transverse and longitudinal conductivities differ significantly, leading to a strong suppression of the former in comparison to the latter.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"1 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical conductivity of hot relativistic plasma in a strong magnetic field\",\"authors\":\"Ritesh Ghosh, Igor A. Shovkovy\",\"doi\":\"10.1103/physrevd.110.096009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We employ first-principles quantum field theoretical methods to investigate the longitudinal and transverse electrical conductivities of a strongly magnetized hot quantum electrodynamics (QED) plasma at the leading order in coupling. The analysis employs the fermion damping rate in the Landau-level representation, calculated with full kinematics and exact amplitudes of one-to-two and two-to-one QED processes. In the relativistic regime, both conductivities exhibit an approximate scaling behavior described by <mjx-container ctxtmenu_counter=\\\"8\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(18 (5 0 (4 1 2 3)) 6 (17 7 16 (15 (10 8 9) (14 11 12 13))))\\\"><mjx-mrow data-semantic-children=\\\"5,17\\\" data-semantic-content=\\\"6\\\" data-semantic- data-semantic-owns=\\\"5 6 17\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"sigma Subscript parallel to comma up tack Baseline equals upper T sigma overtilde Subscript parallel to comma up tack\\\" data-semantic-type=\\\"relseq\\\"><mjx-msub data-semantic-children=\\\"0,4\\\" data-semantic- data-semantic-owns=\\\"0 4\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝜎</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mrow data-semantic-children=\\\"1,2,3\\\" data-semantic-content=\\\"1,2\\\" data-semantic- data-semantic-owns=\\\"1 2 3\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\" size=\\\"s\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"metric\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>∥</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>,</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"logic\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>⊥</mjx-c></mjx-mo></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" space=\\\"4\\\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"7,15\\\" data-semantic-content=\\\"16\\\" data-semantic- data-semantic-owns=\\\"7 16 15\\\" data-semantic-parent=\\\"18\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑇</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"10,14\\\" data-semantic- data-semantic-owns=\\\"10 14\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mover data-semantic-children=\\\"8,9\\\" data-semantic- data-semantic-owns=\\\"8 9\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.102em; padding-left: 0.139em; margin-bottom: -0.533em;\\\"><mjx-mrow><mjx-mo data-semantic-annotation=\\\"accent:tilde\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"operator\\\"><mjx-c>˜</mjx-c></mjx-mo></mjx-mrow></mjx-over><mjx-base><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝜎</mjx-c></mjx-mi></mjx-mrow></mjx-base></mjx-mover></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mrow data-semantic-children=\\\"11,12,13\\\" data-semantic-content=\\\"11,12\\\" data-semantic- data-semantic-owns=\\\"11 12 13\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\" size=\\\"s\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"metric\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>∥</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>,</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"logic\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>⊥</mjx-c></mjx-mo></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-math></mjx-container>, where <mjx-container ctxtmenu_counter=\\\"9\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(7 (2 0 1) (6 3 4 5))\\\"><mjx-msub data-semantic-children=\\\"2,6\\\" data-semantic- data-semantic-owns=\\\"2 6\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"sigma overtilde Subscript parallel to comma up tack\\\" data-semantic-type=\\\"subscript\\\"><mjx-mover data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.102em; padding-left: 0.33em; margin-bottom: -0.533em;\\\"><mjx-mo data-semantic-annotation=\\\"accent:tilde\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0px; margin-left: -0.191em;\\\"><mjx-c>˜</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝜎</mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mrow data-semantic-children=\\\"3,4,5\\\" data-semantic-content=\\\"3,4\\\" data-semantic- data-semantic-owns=\\\"3 4 5\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\" size=\\\"s\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"metric\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>∥</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>,</mjx-c></mjx-mo><mjx-mo data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"logic\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>⊥</mjx-c></mjx-mo></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container> are functions of the dimensionless ratio <mjx-container ctxtmenu_counter=\\\"10\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-children=\\\"10,7\\\" data-semantic-content=\\\"4\\\" data-semantic- data-semantic-owns=\\\"10 4 7\\\" data-semantic-role=\\\"division\\\" data-semantic-speech=\\\"StartAbsoluteValue e upper B EndAbsoluteValue divided by upper T squared\\\" data-semantic-structure=\\\"(11 (10 0 (9 1 8 2) 3) 4 (7 5 6))\\\" data-semantic-type=\\\"infixop\\\"><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"9\\\" data-semantic-content=\\\"0,3\\\" data-semantic- data-semantic-owns=\\\"0 9 3\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: 0.007em;\\\"><mjx-c>|</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"1,2\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-owns=\\\"1 8 2\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑒</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"neutral\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: 0.007em;\\\"><mjx-c>|</mjx-c></mjx-mo></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\"><mjx-c>/</mjx-c></mjx-mo><mjx-msup data-semantic-children=\\\"5,6\\\" data-semantic- data-semantic-owns=\\\"5 6\\\" data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"superscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑇</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: 0.363em; margin-left: 0.052em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> (with <mjx-container ctxtmenu_counter=\\\"11\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper T\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑇</mjx-c></mjx-mi></mjx-math></mjx-container> denoting temperature and <mjx-container ctxtmenu_counter=\\\"12\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper B\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-math></mjx-container> magnetic field strength). We argue that the mechanisms for the transverse and longitudinal conductivities differ significantly, leading to a strong suppression of the former in comparison to the latter.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.096009\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.096009","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
引用
批量引用