Conghao Zhou, Hao-Yi Wu, Andrés N. Salcedo, Sebastian Grandis, Tesla Jeltema, Alexie Leauthaud, Matteo Costanzi, Tomomi Sunayama, David H. Weinberg, Tianyu Zhang, Eduardo Rozo, Chun-Hao To, Sebastian Bocquet, Tamas Varga, Matthew Kwiecien
{"title":"利用多波长数据预测星系团透镜光学选择偏差和投影效应的制约因素","authors":"Conghao Zhou, Hao-Yi Wu, Andrés N. Salcedo, Sebastian Grandis, Tesla Jeltema, Alexie Leauthaud, Matteo Costanzi, Tomomi Sunayama, David H. Weinberg, Tianyu Zhang, Eduardo Rozo, Chun-Hao To, Sebastian Bocquet, Tamas Varga, Matthew Kwiecien","doi":"10.1103/physrevd.110.103508","DOIUrl":null,"url":null,"abstract":"Galaxy clusters identified with optical imaging tend to suffer from projection effects, which impact richness (the number of member galaxies in a cluster) and lensing coherently. Physically unassociated galaxies can be mistaken as cluster members due to the significant uncertainties in their line-of-sight distances, thereby changing the observed cluster richness; at the same time, projection effects alter the weak gravitational lensing signals of clusters, leading to a correlated scatter between richness and lensing at a given halo mass. As a result, the lensing signals for optically selected clusters tend to be biased high. This optical selection bias problem of cluster lensing is one of the key challenges in cluster cosmology. Fortunately, recently available multiwavelength observations of clusters provide a solution. We analyze a simulated dataset mimicking the observed lensing of clusters identified by both optical photometry and gas properties, aiming to constrain this selection bias. Assuming a redMaPPer sample from the Dark Energy Survey with South Pole Telescope Sunyaev-Zeldovich effect observations, we find that an overlapping survey of <mjx-container ctxtmenu_counter=\"13\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(9 0 1 2 (5 3 4))\"><mjx-mrow data-semantic-children=\"0,1,2,5\" data-semantic-collapsed=\"(9 (c 6 7 8) 0 1 2 5)\" data-semantic- data-semantic-owns=\"0 1 2 5\" data-semantic-role=\"text\" data-semantic-speech=\"1300 degree squared\" data-semantic-type=\"punctuated\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">1</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">3</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">0</mjx-c><mjx-c style=\"padding-top: 0.644em;\">0</mjx-c></mjx-mn><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mrow><mjx-msup data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"9\" data-semantic-role=\"prefix function\" data-semantic-type=\"superscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">d</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">e</mjx-c><mjx-c style=\"padding-top: 0.706em;\">g</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: 0.433em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-mrow></mjx-math></mjx-container>, <mjx-container ctxtmenu_counter=\"14\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,2,4\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"0 1 2 3 4\" data-semantic-role=\"inequality\" data-semantic-speech=\"0.2 less than z less than 0.65\" data-semantic-structure=\"(5 0 1 2 3 4)\" data-semantic-type=\"relseq\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">.</mjx-c><mjx-c style=\"padding-top: 0.644em;\">2</mjx-c></mjx-mn><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,<\" data-semantic-parent=\"5\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c><</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"4\"><mjx-c>𝑧</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,<\" data-semantic-parent=\"5\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c><</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"4\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">.</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">6</mjx-c><mjx-c style=\"padding-top: 0.646em;\">5</mjx-c></mjx-mn></mjx-math></mjx-container>, can constrain the average lensing bias to an accuracy of 5%. This provides an exciting opportunity for directly constraining optical selection bias from observations. We further show that our approach can remove the optical selection bias from the lensing signal, paving the way for future optical cluster cosmology analyses.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"2 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting the constraints on optical selection bias and projection effects of galaxy cluster lensing with multiwavelength data\",\"authors\":\"Conghao Zhou, Hao-Yi Wu, Andrés N. Salcedo, Sebastian Grandis, Tesla Jeltema, Alexie Leauthaud, Matteo Costanzi, Tomomi Sunayama, David H. Weinberg, Tianyu Zhang, Eduardo Rozo, Chun-Hao To, Sebastian Bocquet, Tamas Varga, Matthew Kwiecien\",\"doi\":\"10.1103/physrevd.110.103508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Galaxy clusters identified with optical imaging tend to suffer from projection effects, which impact richness (the number of member galaxies in a cluster) and lensing coherently. Physically unassociated galaxies can be mistaken as cluster members due to the significant uncertainties in their line-of-sight distances, thereby changing the observed cluster richness; at the same time, projection effects alter the weak gravitational lensing signals of clusters, leading to a correlated scatter between richness and lensing at a given halo mass. As a result, the lensing signals for optically selected clusters tend to be biased high. This optical selection bias problem of cluster lensing is one of the key challenges in cluster cosmology. Fortunately, recently available multiwavelength observations of clusters provide a solution. We analyze a simulated dataset mimicking the observed lensing of clusters identified by both optical photometry and gas properties, aiming to constrain this selection bias. Assuming a redMaPPer sample from the Dark Energy Survey with South Pole Telescope Sunyaev-Zeldovich effect observations, we find that an overlapping survey of <mjx-container ctxtmenu_counter=\\\"13\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(9 0 1 2 (5 3 4))\\\"><mjx-mrow data-semantic-children=\\\"0,1,2,5\\\" data-semantic-collapsed=\\\"(9 (c 6 7 8) 0 1 2 5)\\\" data-semantic- data-semantic-owns=\\\"0 1 2 5\\\" data-semantic-role=\\\"text\\\" data-semantic-speech=\\\"1300 degree squared\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.644em;\\\">1</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.644em;\\\">3</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.644em;\\\">0</mjx-c><mjx-c style=\\\"padding-top: 0.644em;\\\">0</mjx-c></mjx-mn><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"text\\\" style='font-family: MJX-STX-ZERO, \\\"Helvetica Neue\\\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\\\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\\\" variant=\\\"-explicitFont\\\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"space\\\" data-semantic-type=\\\"text\\\" style='font-family: MJX-STX-ZERO, \\\"Helvetica Neue\\\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\\\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\\\" variant=\\\"-explicitFont\\\"> </mjx-utext></mjx-mtext><mjx-mrow><mjx-msup data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-owns=\\\"3 4\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"prefix function\\\" data-semantic-type=\\\"superscript\\\"><mjx-mrow><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"prefix function\\\" data-semantic-type=\\\"function\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">d</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">e</mjx-c><mjx-c style=\\\"padding-top: 0.706em;\\\">g</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: 0.433em;\\\"><mjx-mrow size=\\\"s\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-mrow></mjx-math></mjx-container>, <mjx-container ctxtmenu_counter=\\\"14\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"0,2,4\\\" data-semantic-content=\\\"1,3\\\" data-semantic- data-semantic-owns=\\\"0 1 2 3 4\\\" data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"0.2 less than z less than 0.65\\\" data-semantic-structure=\\\"(5 0 1 2 3 4)\\\" data-semantic-type=\\\"relseq\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"float\\\" data-semantic-type=\\\"number\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.644em;\\\">0</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.644em;\\\">.</mjx-c><mjx-c style=\\\"padding-top: 0.644em;\\\">2</mjx-c></mjx-mn><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,<\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\"><mjx-c><</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" space=\\\"4\\\"><mjx-c>𝑧</mjx-c></mjx-mi><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,<\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\"><mjx-c><</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"float\\\" data-semantic-type=\\\"number\\\" space=\\\"4\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.646em;\\\">0</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.646em;\\\">.</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.646em;\\\">6</mjx-c><mjx-c style=\\\"padding-top: 0.646em;\\\">5</mjx-c></mjx-mn></mjx-math></mjx-container>, can constrain the average lensing bias to an accuracy of 5%. This provides an exciting opportunity for directly constraining optical selection bias from observations. We further show that our approach can remove the optical selection bias from the lensing signal, paving the way for future optical cluster cosmology analyses.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.103508\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.103508","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Forecasting the constraints on optical selection bias and projection effects of galaxy cluster lensing with multiwavelength data
Galaxy clusters identified with optical imaging tend to suffer from projection effects, which impact richness (the number of member galaxies in a cluster) and lensing coherently. Physically unassociated galaxies can be mistaken as cluster members due to the significant uncertainties in their line-of-sight distances, thereby changing the observed cluster richness; at the same time, projection effects alter the weak gravitational lensing signals of clusters, leading to a correlated scatter between richness and lensing at a given halo mass. As a result, the lensing signals for optically selected clusters tend to be biased high. This optical selection bias problem of cluster lensing is one of the key challenges in cluster cosmology. Fortunately, recently available multiwavelength observations of clusters provide a solution. We analyze a simulated dataset mimicking the observed lensing of clusters identified by both optical photometry and gas properties, aiming to constrain this selection bias. Assuming a redMaPPer sample from the Dark Energy Survey with South Pole Telescope Sunyaev-Zeldovich effect observations, we find that an overlapping survey of 1300deg2, 0.2<𝑧<0.65, can constrain the average lensing bias to an accuracy of 5%. This provides an exciting opportunity for directly constraining optical selection bias from observations. We further show that our approach can remove the optical selection bias from the lensing signal, paving the way for future optical cluster cosmology analyses.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.