L. Peri, M. Benito, C. J. B. Ford, M. F. Gonzalez-Zalba
{"title":"量子电子电路的统一线性响应理论","authors":"L. Peri, M. Benito, C. J. B. Ford, M. F. Gonzalez-Zalba","doi":"10.1038/s41534-024-00907-9","DOIUrl":null,"url":null,"abstract":"<p>Modeling the electrical response of multi-level quantum systems at finite frequency has been typically performed in the context of two incomplete paradigms: (i) input-output theory, which is valid at any frequency but neglects dynamic losses, and (ii) semiclassical theory, which captures dynamic dissipation effects well but is only accurate at low frequencies. Here, we develop a unifying theory, valid for arbitrary frequencies, that captures both the small-signal quantum behavior and the non-unitary effects introduced by relaxation and dephasing. The theory allows a multi-level system to be described by a universal small-signal equivalent-circuit model, a resonant RLC circuit, whose topology only depends on the number of energy levels. We apply our model to a double-quantum-dot charge qubit and a Majorana qubit, showing the capability to continuously describe the systems from adiabatic to resonant and from coherent to incoherent, suggesting new and realistic experiments for improved quantum state readout. Our model will facilitate the design of hybrid quantum–classical circuits and the simulation of qubit control and quantum state readout.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"95 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified linear response theory of quantum electronic circuits\",\"authors\":\"L. Peri, M. Benito, C. J. B. Ford, M. F. Gonzalez-Zalba\",\"doi\":\"10.1038/s41534-024-00907-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modeling the electrical response of multi-level quantum systems at finite frequency has been typically performed in the context of two incomplete paradigms: (i) input-output theory, which is valid at any frequency but neglects dynamic losses, and (ii) semiclassical theory, which captures dynamic dissipation effects well but is only accurate at low frequencies. Here, we develop a unifying theory, valid for arbitrary frequencies, that captures both the small-signal quantum behavior and the non-unitary effects introduced by relaxation and dephasing. The theory allows a multi-level system to be described by a universal small-signal equivalent-circuit model, a resonant RLC circuit, whose topology only depends on the number of energy levels. We apply our model to a double-quantum-dot charge qubit and a Majorana qubit, showing the capability to continuously describe the systems from adiabatic to resonant and from coherent to incoherent, suggesting new and realistic experiments for improved quantum state readout. Our model will facilitate the design of hybrid quantum–classical circuits and the simulation of qubit control and quantum state readout.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00907-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00907-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Unified linear response theory of quantum electronic circuits
Modeling the electrical response of multi-level quantum systems at finite frequency has been typically performed in the context of two incomplete paradigms: (i) input-output theory, which is valid at any frequency but neglects dynamic losses, and (ii) semiclassical theory, which captures dynamic dissipation effects well but is only accurate at low frequencies. Here, we develop a unifying theory, valid for arbitrary frequencies, that captures both the small-signal quantum behavior and the non-unitary effects introduced by relaxation and dephasing. The theory allows a multi-level system to be described by a universal small-signal equivalent-circuit model, a resonant RLC circuit, whose topology only depends on the number of energy levels. We apply our model to a double-quantum-dot charge qubit and a Majorana qubit, showing the capability to continuously describe the systems from adiabatic to resonant and from coherent to incoherent, suggesting new and realistic experiments for improved quantum state readout. Our model will facilitate the design of hybrid quantum–classical circuits and the simulation of qubit control and quantum state readout.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.