Yadong Ye, Qiang Xiao, Huanyu Xie, Hongchang Jin, Hengxing Ji
{"title":"快速识别磷碳阳极材料中的 P-C 键","authors":"Yadong Ye, Qiang Xiao, Huanyu Xie, Hongchang Jin, Hengxing Ji","doi":"10.1039/d4cc03317e","DOIUrl":null,"url":null,"abstract":"Phosphorus-carbon composites in alkali metal-ion batteries benefit from P-C bonds, enhancing stability and performance. Rapid P-C bond detection is crucial. X-ray photoelectron spectroscopy (XPS), balancing convenience and accuracy, was chosen in this study for its efficiency in analyzing P-C bond energies, aiding in the quick identification of these bonds in phosphorus-carbon anodes.","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid identification of P-C bonds in phosphorus-carbon anode materials\",\"authors\":\"Yadong Ye, Qiang Xiao, Huanyu Xie, Hongchang Jin, Hengxing Ji\",\"doi\":\"10.1039/d4cc03317e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphorus-carbon composites in alkali metal-ion batteries benefit from P-C bonds, enhancing stability and performance. Rapid P-C bond detection is crucial. X-ray photoelectron spectroscopy (XPS), balancing convenience and accuracy, was chosen in this study for its efficiency in analyzing P-C bond energies, aiding in the quick identification of these bonds in phosphorus-carbon anodes.\",\"PeriodicalId\":67,\"journal\":{\"name\":\"Chemical Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cc03317e\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cc03317e","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rapid identification of P-C bonds in phosphorus-carbon anode materials
Phosphorus-carbon composites in alkali metal-ion batteries benefit from P-C bonds, enhancing stability and performance. Rapid P-C bond detection is crucial. X-ray photoelectron spectroscopy (XPS), balancing convenience and accuracy, was chosen in this study for its efficiency in analyzing P-C bond energies, aiding in the quick identification of these bonds in phosphorus-carbon anodes.
期刊介绍:
ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.