数字微流体驱动的形状可控局部加热方法研究

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Shangru Zhou, Hui Wang, Gaofeng Zhang, Chi Liu, Wanrong Wang, You Liu, Ziyang Ren, Jun Yang, Huai Zheng, Sheng Liu
{"title":"数字微流体驱动的形状可控局部加热方法研究","authors":"Shangru Zhou, Hui Wang, Gaofeng Zhang, Chi Liu, Wanrong Wang, You Liu, Ziyang Ren, Jun Yang, Huai Zheng, Sheng Liu","doi":"10.1021/acs.langmuir.4c03875","DOIUrl":null,"url":null,"abstract":"The localized heating technique, which minimizes high-temperature impact on thermally sensitive components and reduces impurity dispersion during encapsulation, has become a focal point in MEMS packaging research. In this study, we propose a method for localized heating at specific positions and shapes. A localized heating device, based on distributed electric field control, is constructed, where a polymer droplet on the lower substrate electrode is driven into a liquid column under the influence of a distributed electric field generated between two parallel substrate electrodes. ITO substrate electrodes with various patterns are fabricated, ensuring the shape of the formed liquid column matches the pattern. Leveraging the principles of heat transfer, the temperature of the polymer droplet is regulated via a heating stage to enable targeted heating of defined shapes and areas. Experiments delve into the impact of driving parameters on heating time and efficiency, with results affirming the proposed method’s capability to govern localized heating for particular regions and configurations accurately.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Shape-Controllable Localized Heating Method Driven by Digital Microfluidics\",\"authors\":\"Shangru Zhou, Hui Wang, Gaofeng Zhang, Chi Liu, Wanrong Wang, You Liu, Ziyang Ren, Jun Yang, Huai Zheng, Sheng Liu\",\"doi\":\"10.1021/acs.langmuir.4c03875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The localized heating technique, which minimizes high-temperature impact on thermally sensitive components and reduces impurity dispersion during encapsulation, has become a focal point in MEMS packaging research. In this study, we propose a method for localized heating at specific positions and shapes. A localized heating device, based on distributed electric field control, is constructed, where a polymer droplet on the lower substrate electrode is driven into a liquid column under the influence of a distributed electric field generated between two parallel substrate electrodes. ITO substrate electrodes with various patterns are fabricated, ensuring the shape of the formed liquid column matches the pattern. Leveraging the principles of heat transfer, the temperature of the polymer droplet is regulated via a heating stage to enable targeted heating of defined shapes and areas. Experiments delve into the impact of driving parameters on heating time and efficiency, with results affirming the proposed method’s capability to govern localized heating for particular regions and configurations accurately.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03875\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03875","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

局部加热技术可最大限度地降低高温对热敏元件的影响,并减少封装过程中的杂质扩散,已成为微机电系统封装研究的一个焦点。在本研究中,我们提出了一种在特定位置和形状上进行局部加热的方法。我们构建了一种基于分布式电场控制的局部加热装置,在两个平行基底电极之间产生的分布式电场的影响下,下基底电极上的聚合物液滴被驱动进入液柱。制作了具有各种图案的 ITO 基底电极,确保形成的液柱形状与图案相匹配。利用热传导原理,聚合物液滴的温度可通过一个加热级进行调节,从而对确定的形状和区域进行有针对性的加热。实验深入研究了驱动参数对加热时间和效率的影响,结果证实了所提出的方法能够准确控制特定区域和配置的局部加热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Research on Shape-Controllable Localized Heating Method Driven by Digital Microfluidics

Research on Shape-Controllable Localized Heating Method Driven by Digital Microfluidics
The localized heating technique, which minimizes high-temperature impact on thermally sensitive components and reduces impurity dispersion during encapsulation, has become a focal point in MEMS packaging research. In this study, we propose a method for localized heating at specific positions and shapes. A localized heating device, based on distributed electric field control, is constructed, where a polymer droplet on the lower substrate electrode is driven into a liquid column under the influence of a distributed electric field generated between two parallel substrate electrodes. ITO substrate electrodes with various patterns are fabricated, ensuring the shape of the formed liquid column matches the pattern. Leveraging the principles of heat transfer, the temperature of the polymer droplet is regulated via a heating stage to enable targeted heating of defined shapes and areas. Experiments delve into the impact of driving parameters on heating time and efficiency, with results affirming the proposed method’s capability to govern localized heating for particular regions and configurations accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信