{"title":"增强掺硼氧化钴纳米粒子的电化学活性,促进超级电容器的应用","authors":"Duong Tuan Anh Nguyen , Adugna Nigatu Alene , Alebel Abebaw Teshager , Ababay Ketema Worku , Gietu Yirga Abate , Hsin-Tien Li","doi":"10.1016/j.electacta.2024.145318","DOIUrl":null,"url":null,"abstract":"<div><div>Doping via metal/nonmetal/metalloid dopants in to the crystal structural surface of cobalt oxide nanoparticles are promising for creating electroactive supercapacitors with excellent electrochemical performance. Herein, we fabricate boron doped cobalt oxide nanoparticles (B@Co<sub>3</sub>O<sub>4</sub>) via a facile co-precipitation route for supercapacitor applications. The incorporation of boron into cobalt oxide nanoparticles (3M B@Co<sub>3</sub>O<sub>4</sub>) brings a ∼4.2-fold increase in a specific surface area (548.126 m<sup>2</sup>g<sup>-1</sup>), decrease in band gap energy and reduced in crystalline size. Consequently, the B doped Co<sub>3</sub>O<sub>4</sub> NPs displays a maximum specific capacitance of 998.12 F/g, which is ∼1.50-fold increased as compared to 668.79 F/g of the pristine Co<sub>3</sub>O<sub>4</sub> NPs at current density 1.5mA/cm<sup>2</sup> and scan rate 2mV/s in 1 M KOH electrolyte solution. Moreover, 3 M B@Co<sub>3</sub>O<sub>4</sub> NPs demonstrates excellent power density 711.14W/kg and high <span><span>energy density</span><svg><path></path></svg></span> 195.96Wh/kg Wh/kg. Hence, we believe that boron doped cobalt oxide nanoparticles are a promising electroactive material for the supercapacitive applications.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"510 ","pages":"Article 145318"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced electrochemical activity of boron doped cobalt oxide nanoparticles towards supercapacitor application\",\"authors\":\"Duong Tuan Anh Nguyen , Adugna Nigatu Alene , Alebel Abebaw Teshager , Ababay Ketema Worku , Gietu Yirga Abate , Hsin-Tien Li\",\"doi\":\"10.1016/j.electacta.2024.145318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Doping via metal/nonmetal/metalloid dopants in to the crystal structural surface of cobalt oxide nanoparticles are promising for creating electroactive supercapacitors with excellent electrochemical performance. Herein, we fabricate boron doped cobalt oxide nanoparticles (B@Co<sub>3</sub>O<sub>4</sub>) via a facile co-precipitation route for supercapacitor applications. The incorporation of boron into cobalt oxide nanoparticles (3M B@Co<sub>3</sub>O<sub>4</sub>) brings a ∼4.2-fold increase in a specific surface area (548.126 m<sup>2</sup>g<sup>-1</sup>), decrease in band gap energy and reduced in crystalline size. Consequently, the B doped Co<sub>3</sub>O<sub>4</sub> NPs displays a maximum specific capacitance of 998.12 F/g, which is ∼1.50-fold increased as compared to 668.79 F/g of the pristine Co<sub>3</sub>O<sub>4</sub> NPs at current density 1.5mA/cm<sup>2</sup> and scan rate 2mV/s in 1 M KOH electrolyte solution. Moreover, 3 M B@Co<sub>3</sub>O<sub>4</sub> NPs demonstrates excellent power density 711.14W/kg and high <span><span>energy density</span><svg><path></path></svg></span> 195.96Wh/kg Wh/kg. Hence, we believe that boron doped cobalt oxide nanoparticles are a promising electroactive material for the supercapacitive applications.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"510 \",\"pages\":\"Article 145318\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468624015548\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015548","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Enhanced electrochemical activity of boron doped cobalt oxide nanoparticles towards supercapacitor application
Doping via metal/nonmetal/metalloid dopants in to the crystal structural surface of cobalt oxide nanoparticles are promising for creating electroactive supercapacitors with excellent electrochemical performance. Herein, we fabricate boron doped cobalt oxide nanoparticles (B@Co3O4) via a facile co-precipitation route for supercapacitor applications. The incorporation of boron into cobalt oxide nanoparticles (3M B@Co3O4) brings a ∼4.2-fold increase in a specific surface area (548.126 m2g-1), decrease in band gap energy and reduced in crystalline size. Consequently, the B doped Co3O4 NPs displays a maximum specific capacitance of 998.12 F/g, which is ∼1.50-fold increased as compared to 668.79 F/g of the pristine Co3O4 NPs at current density 1.5mA/cm2 and scan rate 2mV/s in 1 M KOH electrolyte solution. Moreover, 3 M B@Co3O4 NPs demonstrates excellent power density 711.14W/kg and high energy density 195.96Wh/kg Wh/kg. Hence, we believe that boron doped cobalt oxide nanoparticles are a promising electroactive material for the supercapacitive applications.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.