Priyadharshini T , M. Lakshmi Narayana , Murugasenapathi N․K․ , Tamilarasan Palanisamy , A.V. Ravindra
{"title":"定制二维导电共邻苯二酚金属有机框架的电催化氧进化反应性能","authors":"Priyadharshini T , M. Lakshmi Narayana , Murugasenapathi N․K․ , Tamilarasan Palanisamy , A.V. Ravindra","doi":"10.1016/j.electacta.2024.145343","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, we report the microwave hydrothermal synthesis of highly porous and conductive 2D Co-catecholate MOFs (Co-CATs) in the absence (Co-CAT-WO) and presence (Co-CAT-W) of N-methyl-2-pyrrolidone (NMP) polar solvent, and the study of these Co-CATs as electrocatalysts for oxygen evolution reaction (OER). The OER performance of Co-CAT-WO and Co-CAT-W is compared. The as-synthesized Co-CATs exhibit a 2D layered hexagonal structure. The electrical conductivity of Co-CAT-WO and Co-CAT-W is 6.9 and 5.8 S/m, respectively. The good conductivity and porous structure can initiate charge transport to achieve better OER performance under the 4e<sup>-</sup>-transfer process. The as-prepared Co-CAT-WO and Co-CAT-W, respectively, show an overpotential of 455 and 424 mV at 10 mA/cm<sup>2</sup> after performing the durability and chronoamperometry experiments for 13 h in 1 M KOH. From the electrochemical studies, it is apparent that the Co-CAT-W exhibits better OER performance with low overpotential, high current density, and excellent stability over extended cycling. Moreover, the lower HOMO-LUMO gap for Co-CAT-W than that of the Co-CAT-WO endorses its better electrocatalytic activity. The post-OER results show that the Co-CAT-W electrocatalyst acts as a \"precatalyst\" rather than the original catalyst, and it undergoes electrochemical transformation to metal hydroxide and metal oxyhydroxide after the OER studies, promoting the OER kinetics. The findings of this work offer valuable insights into the synthetic strategies for developing 2D conducting metal-catecholate MOF catalysts for efficient and sustainable OER processes, which is crucial in water splitting for sustainable energy production.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"509 ","pages":"Article 145343"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring of electrocatalytic oxygen evolution reaction performance of 2D conductive Co-catecholate metal-organic frameworks\",\"authors\":\"Priyadharshini T , M. Lakshmi Narayana , Murugasenapathi N․K․ , Tamilarasan Palanisamy , A.V. Ravindra\",\"doi\":\"10.1016/j.electacta.2024.145343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Herein, we report the microwave hydrothermal synthesis of highly porous and conductive 2D Co-catecholate MOFs (Co-CATs) in the absence (Co-CAT-WO) and presence (Co-CAT-W) of N-methyl-2-pyrrolidone (NMP) polar solvent, and the study of these Co-CATs as electrocatalysts for oxygen evolution reaction (OER). The OER performance of Co-CAT-WO and Co-CAT-W is compared. The as-synthesized Co-CATs exhibit a 2D layered hexagonal structure. The electrical conductivity of Co-CAT-WO and Co-CAT-W is 6.9 and 5.8 S/m, respectively. The good conductivity and porous structure can initiate charge transport to achieve better OER performance under the 4e<sup>-</sup>-transfer process. The as-prepared Co-CAT-WO and Co-CAT-W, respectively, show an overpotential of 455 and 424 mV at 10 mA/cm<sup>2</sup> after performing the durability and chronoamperometry experiments for 13 h in 1 M KOH. From the electrochemical studies, it is apparent that the Co-CAT-W exhibits better OER performance with low overpotential, high current density, and excellent stability over extended cycling. Moreover, the lower HOMO-LUMO gap for Co-CAT-W than that of the Co-CAT-WO endorses its better electrocatalytic activity. The post-OER results show that the Co-CAT-W electrocatalyst acts as a \\\"precatalyst\\\" rather than the original catalyst, and it undergoes electrochemical transformation to metal hydroxide and metal oxyhydroxide after the OER studies, promoting the OER kinetics. The findings of this work offer valuable insights into the synthetic strategies for developing 2D conducting metal-catecholate MOF catalysts for efficient and sustainable OER processes, which is crucial in water splitting for sustainable energy production.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"509 \",\"pages\":\"Article 145343\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468624015792\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015792","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Tailoring of electrocatalytic oxygen evolution reaction performance of 2D conductive Co-catecholate metal-organic frameworks
Herein, we report the microwave hydrothermal synthesis of highly porous and conductive 2D Co-catecholate MOFs (Co-CATs) in the absence (Co-CAT-WO) and presence (Co-CAT-W) of N-methyl-2-pyrrolidone (NMP) polar solvent, and the study of these Co-CATs as electrocatalysts for oxygen evolution reaction (OER). The OER performance of Co-CAT-WO and Co-CAT-W is compared. The as-synthesized Co-CATs exhibit a 2D layered hexagonal structure. The electrical conductivity of Co-CAT-WO and Co-CAT-W is 6.9 and 5.8 S/m, respectively. The good conductivity and porous structure can initiate charge transport to achieve better OER performance under the 4e--transfer process. The as-prepared Co-CAT-WO and Co-CAT-W, respectively, show an overpotential of 455 and 424 mV at 10 mA/cm2 after performing the durability and chronoamperometry experiments for 13 h in 1 M KOH. From the electrochemical studies, it is apparent that the Co-CAT-W exhibits better OER performance with low overpotential, high current density, and excellent stability over extended cycling. Moreover, the lower HOMO-LUMO gap for Co-CAT-W than that of the Co-CAT-WO endorses its better electrocatalytic activity. The post-OER results show that the Co-CAT-W electrocatalyst acts as a "precatalyst" rather than the original catalyst, and it undergoes electrochemical transformation to metal hydroxide and metal oxyhydroxide after the OER studies, promoting the OER kinetics. The findings of this work offer valuable insights into the synthetic strategies for developing 2D conducting metal-catecholate MOF catalysts for efficient and sustainable OER processes, which is crucial in water splitting for sustainable energy production.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.