为垂直排列的硼化钛纳米片构建功能性快离子导体界面,实现卓越的钠离子存储性能

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenqing Wang, Qian Liu, Zhe Cui, Jinqi Zhu, Mengluan Gao, Lingjian Zhang, Fuming Weng, Rujia Zou
{"title":"为垂直排列的硼化钛纳米片构建功能性快离子导体界面,实现卓越的钠离子存储性能","authors":"Wenqing Wang, Qian Liu, Zhe Cui, Jinqi Zhu, Mengluan Gao, Lingjian Zhang, Fuming Weng, Rujia Zou","doi":"10.1002/adfm.202417457","DOIUrl":null,"url":null,"abstract":"Designing excellent anode materials to enhance the sluggish interfacial kinetics of Na<jats:sup>+</jats:sup> is a key challenge in improving the electrochemical performance of sodium‐ion batteries (SIBs). Herein, an ultra‐thin fast‐ionic conductor NaB<jats:sub>5</jats:sub>C coating TiB<jats:sub>2</jats:sub> nanoflowers with vertically aligned nanosheet arrays to form yolk–shell TiB<jats:sub>2</jats:sub>@NaB<jats:sub>5</jats:sub>C (TBNBC) nanospheres as an anode material for SIBs. The unique structure creates direct and short ion/electron transfer pathways and reserves enough space to prevent the uneven electrochemical reactions from TiB<jats:sub>2</jats:sub> nanosheets aggregation and stacking, thus ensuring the long‐term cycling stability of SIBs. Additionally, the NaB<jats:sub>5</jats:sub>C coating with fast‐ionic conductor functional interphase provides rapid Na<jats:sup>+</jats:sup> transport channels and effectively reduces the Na<jats:sup>+</jats:sup> de‐solvation barrier, accelerating Na<jats:sup>+</jats:sup> reaction kinetics. Furthermore, a homogeneous and robust solid electrolyte interphase (SEI) film including inorganic boron species and fluorine‐rich inner layer is constructed on the TBNBC electrode to delocalize stress and induce a uniform Na<jats:sup>+</jats:sup> flux, further promoting fast Na<jats:sup>+</jats:sup> interphase reaction kinetics. Consequently, the optimized composites achieve ultrastable cycling performances of 173 mAh g<jats:sup>−1</jats:sup> over 5000 cycles at 10 A g<jats:sup>−1</jats:sup>. More importantly, they also exhibit an outstanding capacity of 182.2 mAh g<jats:sup>−1</jats:sup> at −20 °C. This work offers opportunities for the energy storage use of transition metal borides under extreme conditions.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"14 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing a Functional Fast‐Ion Conductor Interface for Vertically Aligned Titanium Boride Nanosheets to Achieve Superior Sodium‐Ion Storage Performances\",\"authors\":\"Wenqing Wang, Qian Liu, Zhe Cui, Jinqi Zhu, Mengluan Gao, Lingjian Zhang, Fuming Weng, Rujia Zou\",\"doi\":\"10.1002/adfm.202417457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing excellent anode materials to enhance the sluggish interfacial kinetics of Na<jats:sup>+</jats:sup> is a key challenge in improving the electrochemical performance of sodium‐ion batteries (SIBs). Herein, an ultra‐thin fast‐ionic conductor NaB<jats:sub>5</jats:sub>C coating TiB<jats:sub>2</jats:sub> nanoflowers with vertically aligned nanosheet arrays to form yolk–shell TiB<jats:sub>2</jats:sub>@NaB<jats:sub>5</jats:sub>C (TBNBC) nanospheres as an anode material for SIBs. The unique structure creates direct and short ion/electron transfer pathways and reserves enough space to prevent the uneven electrochemical reactions from TiB<jats:sub>2</jats:sub> nanosheets aggregation and stacking, thus ensuring the long‐term cycling stability of SIBs. Additionally, the NaB<jats:sub>5</jats:sub>C coating with fast‐ionic conductor functional interphase provides rapid Na<jats:sup>+</jats:sup> transport channels and effectively reduces the Na<jats:sup>+</jats:sup> de‐solvation barrier, accelerating Na<jats:sup>+</jats:sup> reaction kinetics. Furthermore, a homogeneous and robust solid electrolyte interphase (SEI) film including inorganic boron species and fluorine‐rich inner layer is constructed on the TBNBC electrode to delocalize stress and induce a uniform Na<jats:sup>+</jats:sup> flux, further promoting fast Na<jats:sup>+</jats:sup> interphase reaction kinetics. Consequently, the optimized composites achieve ultrastable cycling performances of 173 mAh g<jats:sup>−1</jats:sup> over 5000 cycles at 10 A g<jats:sup>−1</jats:sup>. More importantly, they also exhibit an outstanding capacity of 182.2 mAh g<jats:sup>−1</jats:sup> at −20 °C. This work offers opportunities for the energy storage use of transition metal borides under extreme conditions.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202417457\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417457","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计优良的负极材料以增强 Na+ 缓慢的界面动力学是提高钠离子电池 (SIB) 电化学性能的关键挑战。在此,一种超薄快速离子导体 NaB5C 镀膜 TiB2 纳米花与垂直排列的纳米片阵列形成蛋黄壳 TiB2@NaB5C (TBNBC)纳米球,作为 SIB 的负极材料。这种独特的结构创造了直接而短的离子/电子转移途径,并预留了足够的空间以防止 TiB2 纳米片聚集和堆叠产生不均匀的电化学反应,从而确保了 SIB 的长期循环稳定性。此外,NaB5C 涂层与快速离子导体功能相间提供了快速的 Na+ 传输通道,有效降低了 Na+ 脱溶障碍,加速了 Na+ 反应动力学。此外,还在 TBNBC 电极上构建了一层均匀、坚固的固体电解质间相(SEI)薄膜,其中包括无机硼物种和富氟内层,以分散应力并诱导均匀的 Na+ 通量,进一步促进 Na+ 间相反应的快速动力学。因此,经过优化的复合材料在 10 A g-1 条件下循环 5000 次后,可达到 173 mAh g-1 的超稳定循环性能。更重要的是,它们在-20 °C时还表现出了182.2 mAh g-1的出色容量。这项工作为过渡金属硼化物在极端条件下的储能应用提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Constructing a Functional Fast‐Ion Conductor Interface for Vertically Aligned Titanium Boride Nanosheets to Achieve Superior Sodium‐Ion Storage Performances

Constructing a Functional Fast‐Ion Conductor Interface for Vertically Aligned Titanium Boride Nanosheets to Achieve Superior Sodium‐Ion Storage Performances
Designing excellent anode materials to enhance the sluggish interfacial kinetics of Na+ is a key challenge in improving the electrochemical performance of sodium‐ion batteries (SIBs). Herein, an ultra‐thin fast‐ionic conductor NaB5C coating TiB2 nanoflowers with vertically aligned nanosheet arrays to form yolk–shell TiB2@NaB5C (TBNBC) nanospheres as an anode material for SIBs. The unique structure creates direct and short ion/electron transfer pathways and reserves enough space to prevent the uneven electrochemical reactions from TiB2 nanosheets aggregation and stacking, thus ensuring the long‐term cycling stability of SIBs. Additionally, the NaB5C coating with fast‐ionic conductor functional interphase provides rapid Na+ transport channels and effectively reduces the Na+ de‐solvation barrier, accelerating Na+ reaction kinetics. Furthermore, a homogeneous and robust solid electrolyte interphase (SEI) film including inorganic boron species and fluorine‐rich inner layer is constructed on the TBNBC electrode to delocalize stress and induce a uniform Na+ flux, further promoting fast Na+ interphase reaction kinetics. Consequently, the optimized composites achieve ultrastable cycling performances of 173 mAh g−1 over 5000 cycles at 10 A g−1. More importantly, they also exhibit an outstanding capacity of 182.2 mAh g−1 at −20 °C. This work offers opportunities for the energy storage use of transition metal borides under extreme conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信