{"title":"环形变化:不同泛素和泛素样蛋白对 Parkin 活性的调控","authors":"Shalini Iyer, Chittaranjan Das","doi":"10.1016/j.str.2024.10.015","DOIUrl":null,"url":null,"abstract":"Phosphorylation of ubiquitin and the ubiquitin-like domain of Parkin, mediated by the kinase PINK1, is essential for the liberation of the E3 ligase from its autoinhibited state. In this issue of <em>Structure</em>, Lenka et al.<span><span><sup>1</sup></span></span> provide the structural basis for the specificity and stronger Parkin activation by phospho-NEDD8 compared to phospho-ubiquitin.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"95 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ringing the changes: Regulation of Parkin activity by different ubiquitin and ubiquitin-like proteins\",\"authors\":\"Shalini Iyer, Chittaranjan Das\",\"doi\":\"10.1016/j.str.2024.10.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphorylation of ubiquitin and the ubiquitin-like domain of Parkin, mediated by the kinase PINK1, is essential for the liberation of the E3 ligase from its autoinhibited state. In this issue of <em>Structure</em>, Lenka et al.<span><span><sup>1</sup></span></span> provide the structural basis for the specificity and stronger Parkin activation by phospho-NEDD8 compared to phospho-ubiquitin.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2024.10.015\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.10.015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ringing the changes: Regulation of Parkin activity by different ubiquitin and ubiquitin-like proteins
Phosphorylation of ubiquitin and the ubiquitin-like domain of Parkin, mediated by the kinase PINK1, is essential for the liberation of the E3 ligase from its autoinhibited state. In this issue of Structure, Lenka et al.1 provide the structural basis for the specificity and stronger Parkin activation by phospho-NEDD8 compared to phospho-ubiquitin.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.