流行的多维非线性罗斯定理中的界限

IF 1 2区 数学 Q1 MATHEMATICS
Sarah Peluse, Sean Prendiville, Xuancheng Shao
{"title":"流行的多维非线性罗斯定理中的界限","authors":"Sarah Peluse,&nbsp;Sean Prendiville,&nbsp;Xuancheng Shao","doi":"10.1112/jlms.70019","DOIUrl":null,"url":null,"abstract":"<p>A nonlinear version of Roth's theorem states that dense sets of integers contain configurations of the form <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>+</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$x+d$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>+</mo>\n <msup>\n <mi>d</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$x+d^2$</annotation>\n </semantics></math>. We obtain a multidimensional version of this result, which can be regarded as a first step toward effectivising those cases of the multidimensional polynomial Szemerédi theorem involving polynomials with distinct degrees. In addition, we prove an effective “popular” version of this result, showing that every dense set has some non-zero <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> such that the number of configurations with difference parameter <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> is almost optimal. Perhaps surprisingly, the quantitative dependence in this result is exponential, compared to the tower-type bounds encountered in the popular linear Roth theorem.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds in a popular multidimensional nonlinear Roth theorem\",\"authors\":\"Sarah Peluse,&nbsp;Sean Prendiville,&nbsp;Xuancheng Shao\",\"doi\":\"10.1112/jlms.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A nonlinear version of Roth's theorem states that dense sets of integers contain configurations of the form <span></span><math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>+</mo>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$x+d$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>+</mo>\\n <msup>\\n <mi>d</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$x+d^2$</annotation>\\n </semantics></math>. We obtain a multidimensional version of this result, which can be regarded as a first step toward effectivising those cases of the multidimensional polynomial Szemerédi theorem involving polynomials with distinct degrees. In addition, we prove an effective “popular” version of this result, showing that every dense set has some non-zero <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math> such that the number of configurations with difference parameter <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math> is almost optimal. Perhaps surprisingly, the quantitative dependence in this result is exponential, compared to the tower-type bounds encountered in the popular linear Roth theorem.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70019\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70019","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

罗思定理的非线性版本指出,密集整数集包含 x $x$ , x + d $x+d$ , x + d 2 $x+d^2$ 形式的配置。我们得到了这一结果的多维版本,这可以看作是实现多维多项式 Szemerédi 定理中涉及具有不同度数的多项式的情况的第一步。此外,我们还证明了这一结果的有效 "流行 "版本,即每个稠密集都有某个非零 d $d$,从而差分参数 d $d$ 的配置数几乎是最优的。也许令人惊讶的是,与流行的线性罗斯定理中遇到的塔型界限相比,这一结果的数量依赖性是指数级的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds in a popular multidimensional nonlinear Roth theorem

A nonlinear version of Roth's theorem states that dense sets of integers contain configurations of the form x $x$ , x + d $x+d$ , x + d 2 $x+d^2$ . We obtain a multidimensional version of this result, which can be regarded as a first step toward effectivising those cases of the multidimensional polynomial Szemerédi theorem involving polynomials with distinct degrees. In addition, we prove an effective “popular” version of this result, showing that every dense set has some non-zero d $d$ such that the number of configurations with difference parameter d $d$ is almost optimal. Perhaps surprisingly, the quantitative dependence in this result is exponential, compared to the tower-type bounds encountered in the popular linear Roth theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信