{"title":"流行的多维非线性罗斯定理中的界限","authors":"Sarah Peluse, Sean Prendiville, Xuancheng Shao","doi":"10.1112/jlms.70019","DOIUrl":null,"url":null,"abstract":"<p>A nonlinear version of Roth's theorem states that dense sets of integers contain configurations of the form <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>+</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$x+d$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>+</mo>\n <msup>\n <mi>d</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$x+d^2$</annotation>\n </semantics></math>. We obtain a multidimensional version of this result, which can be regarded as a first step toward effectivising those cases of the multidimensional polynomial Szemerédi theorem involving polynomials with distinct degrees. In addition, we prove an effective “popular” version of this result, showing that every dense set has some non-zero <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> such that the number of configurations with difference parameter <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> is almost optimal. Perhaps surprisingly, the quantitative dependence in this result is exponential, compared to the tower-type bounds encountered in the popular linear Roth theorem.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds in a popular multidimensional nonlinear Roth theorem\",\"authors\":\"Sarah Peluse, Sean Prendiville, Xuancheng Shao\",\"doi\":\"10.1112/jlms.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A nonlinear version of Roth's theorem states that dense sets of integers contain configurations of the form <span></span><math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>+</mo>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$x+d$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>+</mo>\\n <msup>\\n <mi>d</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$x+d^2$</annotation>\\n </semantics></math>. We obtain a multidimensional version of this result, which can be regarded as a first step toward effectivising those cases of the multidimensional polynomial Szemerédi theorem involving polynomials with distinct degrees. In addition, we prove an effective “popular” version of this result, showing that every dense set has some non-zero <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math> such that the number of configurations with difference parameter <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math> is almost optimal. Perhaps surprisingly, the quantitative dependence in this result is exponential, compared to the tower-type bounds encountered in the popular linear Roth theorem.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70019\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70019","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
罗思定理的非线性版本指出,密集整数集包含 x $x$ , x + d $x+d$ , x + d 2 $x+d^2$ 形式的配置。我们得到了这一结果的多维版本,这可以看作是实现多维多项式 Szemerédi 定理中涉及具有不同度数的多项式的情况的第一步。此外,我们还证明了这一结果的有效 "流行 "版本,即每个稠密集都有某个非零 d $d$,从而差分参数 d $d$ 的配置数几乎是最优的。也许令人惊讶的是,与流行的线性罗斯定理中遇到的塔型界限相比,这一结果的数量依赖性是指数级的。
Bounds in a popular multidimensional nonlinear Roth theorem
A nonlinear version of Roth's theorem states that dense sets of integers contain configurations of the form , , . We obtain a multidimensional version of this result, which can be regarded as a first step toward effectivising those cases of the multidimensional polynomial Szemerédi theorem involving polynomials with distinct degrees. In addition, we prove an effective “popular” version of this result, showing that every dense set has some non-zero such that the number of configurations with difference parameter is almost optimal. Perhaps surprisingly, the quantitative dependence in this result is exponential, compared to the tower-type bounds encountered in the popular linear Roth theorem.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.