{"title":"具有滑移窗口选择和在线参数修改功能的三相电压源变流器优化控制集扩展方法","authors":"Linqiang Hu, Wanjun Lei, Zhongxiu Xiao, Xing Sun","doi":"10.1049/pel2.12733","DOIUrl":null,"url":null,"abstract":"<p>Finite control set model predictive control (FCS-MPC) has been widely used in the control of three-phase voltage source converter (VSC), but its control performance declines sharply at low sampling frequencies. This paper proposes an optimal control set expansion method with slip window selection and online parameter modification to improve the performance and robustness of FCS-MPC. First, the performance of different control set expansion methods is compared. Then, an optimal control set expansion method that carries 12 virtual vectors is proposed. Last, a slip window selection strategy and an online parameter modification algorithm are proposed to reduce the computational burden and improve the controller's robustness respectively. Experimental result show that the proposed method significantly improves the control accuracy and carries good robustness and anti-disturbance ability. Compared with existing typical MPC strategies, the proposed method obtains better current quality with lower switching frequency and requires less calculation. Moreover, the design of the proposed method is simple and there is no weighting factor to be tuned, which increases the method's practicality.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12733","citationCount":"0","resultStr":"{\"title\":\"Optimal control set expansion method for three-phase voltage source converter with slip window selection and online parameter modification\",\"authors\":\"Linqiang Hu, Wanjun Lei, Zhongxiu Xiao, Xing Sun\",\"doi\":\"10.1049/pel2.12733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Finite control set model predictive control (FCS-MPC) has been widely used in the control of three-phase voltage source converter (VSC), but its control performance declines sharply at low sampling frequencies. This paper proposes an optimal control set expansion method with slip window selection and online parameter modification to improve the performance and robustness of FCS-MPC. First, the performance of different control set expansion methods is compared. Then, an optimal control set expansion method that carries 12 virtual vectors is proposed. Last, a slip window selection strategy and an online parameter modification algorithm are proposed to reduce the computational burden and improve the controller's robustness respectively. Experimental result show that the proposed method significantly improves the control accuracy and carries good robustness and anti-disturbance ability. Compared with existing typical MPC strategies, the proposed method obtains better current quality with lower switching frequency and requires less calculation. Moreover, the design of the proposed method is simple and there is no weighting factor to be tuned, which increases the method's practicality.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12733\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12733\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12733","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimal control set expansion method for three-phase voltage source converter with slip window selection and online parameter modification
Finite control set model predictive control (FCS-MPC) has been widely used in the control of three-phase voltage source converter (VSC), but its control performance declines sharply at low sampling frequencies. This paper proposes an optimal control set expansion method with slip window selection and online parameter modification to improve the performance and robustness of FCS-MPC. First, the performance of different control set expansion methods is compared. Then, an optimal control set expansion method that carries 12 virtual vectors is proposed. Last, a slip window selection strategy and an online parameter modification algorithm are proposed to reduce the computational burden and improve the controller's robustness respectively. Experimental result show that the proposed method significantly improves the control accuracy and carries good robustness and anti-disturbance ability. Compared with existing typical MPC strategies, the proposed method obtains better current quality with lower switching frequency and requires less calculation. Moreover, the design of the proposed method is simple and there is no weighting factor to be tuned, which increases the method's practicality.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.