Yingying Tong, Ming Chu, Jia Zhou, Qilan Wang, Gang Li, A. M. Abd El-Aty, Jun Dang
{"title":"通过制备色谱法从虎杖中分离出高极性五倍子酰葡萄糖苷同系物并评估其体外抗氧化活性","authors":"Yingying Tong, Ming Chu, Jia Zhou, Qilan Wang, Gang Li, A. M. Abd El-Aty, Jun Dang","doi":"10.1186/s13065-024-01330-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the rapid and efficient preparation of isolated galloyl glucoside tautomer free radical inhibitors was investigated using <i>Saxifraga tangutica</i> as a raw material. Four highly polar galloyl glucoside tautomers, 3-<i>O</i>-galloyl-α-<span>d</span>-glucose ⇌ 3-<i>O</i>-galloyl-β-<span>d</span>-glucose (Fr2-1-1), 2-<i>O</i>-galloyl-α-<span>d</span>-glucose ⇌ 2-<i>O</i>-galloyl-β-<span>d</span>-glucose (Fr2-1-2/2-1-3), 1-<i>O</i>-galloyl-β-<span>d</span>-glucose (Fr2-2-1), and 6-<i>O</i>-galloyl-α-<span>d</span>-glucose ⇌ 6-<i>O</i>-galloyl-β-<span>d</span>-glucose (Fr2-3-1/Fr2-3-2), were obtained via two-step medium-pressure liquid chromatography (with solid loading instead of conventional liquid injection) and one-step high-performance chromatography coupled with on-line RPLC-DPPH techniques for targeted isolation. This separation integration technique not only increases sample intake and reduces time cost but also visualizes each step of targeted separation. All four compounds were isolated from the plant for the first time. In vitro antioxidant activity assays by DPPH (1,1‑diphenyl-2-picrylhydrazyl) revealed that Fr2-1-2/Fr2-1-3 (IC<sub>50</sub>: 5.52 ± 0.32 μM), Fr2-2-1 (IC<sub>50</sub>: 7.22 ± 0.57 μM), and Fr2-3–1/Fr2-3-2 (IC<sub>50</sub>: 7.36 ± 0.25 μM) had superior free radical scavenging abilities and that both were superior to that of quercetin (IC<sub>50</sub>: 18.61 ± 3.55 μM). Oxidative stress assays revealed that Fr2-1-2/Fr2-1-3 significantly inhibited oxidative stress damage in H<sub>2</sub>O<sub>2</sub>-induced HepG2 cells, decreased the level of ROS (<i>P</i> < 0.01) and protected hepatocytes. Combined with the current results, gallic acid showed greater antioxidant activity when H atoms were replaced at <span>d</span>-glucose –OH (C-2) than at the other three sites [–OH (C-1), –OH (C-6) and –OH (C-3)].</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01330-z","citationCount":"0","resultStr":"{\"title\":\"Isolation of highly polar galloyl glucoside tautomers from Saxifraga tangutica through preparative chromatography and assessment of their in vitro antioxidant activity\",\"authors\":\"Yingying Tong, Ming Chu, Jia Zhou, Qilan Wang, Gang Li, A. M. Abd El-Aty, Jun Dang\",\"doi\":\"10.1186/s13065-024-01330-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, the rapid and efficient preparation of isolated galloyl glucoside tautomer free radical inhibitors was investigated using <i>Saxifraga tangutica</i> as a raw material. Four highly polar galloyl glucoside tautomers, 3-<i>O</i>-galloyl-α-<span>d</span>-glucose ⇌ 3-<i>O</i>-galloyl-β-<span>d</span>-glucose (Fr2-1-1), 2-<i>O</i>-galloyl-α-<span>d</span>-glucose ⇌ 2-<i>O</i>-galloyl-β-<span>d</span>-glucose (Fr2-1-2/2-1-3), 1-<i>O</i>-galloyl-β-<span>d</span>-glucose (Fr2-2-1), and 6-<i>O</i>-galloyl-α-<span>d</span>-glucose ⇌ 6-<i>O</i>-galloyl-β-<span>d</span>-glucose (Fr2-3-1/Fr2-3-2), were obtained via two-step medium-pressure liquid chromatography (with solid loading instead of conventional liquid injection) and one-step high-performance chromatography coupled with on-line RPLC-DPPH techniques for targeted isolation. This separation integration technique not only increases sample intake and reduces time cost but also visualizes each step of targeted separation. All four compounds were isolated from the plant for the first time. In vitro antioxidant activity assays by DPPH (1,1‑diphenyl-2-picrylhydrazyl) revealed that Fr2-1-2/Fr2-1-3 (IC<sub>50</sub>: 5.52 ± 0.32 μM), Fr2-2-1 (IC<sub>50</sub>: 7.22 ± 0.57 μM), and Fr2-3–1/Fr2-3-2 (IC<sub>50</sub>: 7.36 ± 0.25 μM) had superior free radical scavenging abilities and that both were superior to that of quercetin (IC<sub>50</sub>: 18.61 ± 3.55 μM). Oxidative stress assays revealed that Fr2-1-2/Fr2-1-3 significantly inhibited oxidative stress damage in H<sub>2</sub>O<sub>2</sub>-induced HepG2 cells, decreased the level of ROS (<i>P</i> < 0.01) and protected hepatocytes. Combined with the current results, gallic acid showed greater antioxidant activity when H atoms were replaced at <span>d</span>-glucose –OH (C-2) than at the other three sites [–OH (C-1), –OH (C-6) and –OH (C-3)].</p></div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01330-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-024-01330-z\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-024-01330-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Isolation of highly polar galloyl glucoside tautomers from Saxifraga tangutica through preparative chromatography and assessment of their in vitro antioxidant activity
In this work, the rapid and efficient preparation of isolated galloyl glucoside tautomer free radical inhibitors was investigated using Saxifraga tangutica as a raw material. Four highly polar galloyl glucoside tautomers, 3-O-galloyl-α-d-glucose ⇌ 3-O-galloyl-β-d-glucose (Fr2-1-1), 2-O-galloyl-α-d-glucose ⇌ 2-O-galloyl-β-d-glucose (Fr2-1-2/2-1-3), 1-O-galloyl-β-d-glucose (Fr2-2-1), and 6-O-galloyl-α-d-glucose ⇌ 6-O-galloyl-β-d-glucose (Fr2-3-1/Fr2-3-2), were obtained via two-step medium-pressure liquid chromatography (with solid loading instead of conventional liquid injection) and one-step high-performance chromatography coupled with on-line RPLC-DPPH techniques for targeted isolation. This separation integration technique not only increases sample intake and reduces time cost but also visualizes each step of targeted separation. All four compounds were isolated from the plant for the first time. In vitro antioxidant activity assays by DPPH (1,1‑diphenyl-2-picrylhydrazyl) revealed that Fr2-1-2/Fr2-1-3 (IC50: 5.52 ± 0.32 μM), Fr2-2-1 (IC50: 7.22 ± 0.57 μM), and Fr2-3–1/Fr2-3-2 (IC50: 7.36 ± 0.25 μM) had superior free radical scavenging abilities and that both were superior to that of quercetin (IC50: 18.61 ± 3.55 μM). Oxidative stress assays revealed that Fr2-1-2/Fr2-1-3 significantly inhibited oxidative stress damage in H2O2-induced HepG2 cells, decreased the level of ROS (P < 0.01) and protected hepatocytes. Combined with the current results, gallic acid showed greater antioxidant activity when H atoms were replaced at d-glucose –OH (C-2) than at the other three sites [–OH (C-1), –OH (C-6) and –OH (C-3)].
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.