{"title":"共形场论中的弗赖登塔尔对偶性","authors":"Arghya Chattopadhyay, Taniya Mandal, Alessio Marrani","doi":"10.1007/JHEP11(2024)057","DOIUrl":null,"url":null,"abstract":"<p>Rotational Freudenthal duality (RFD) relates two extremal Kerr-Newman (KN) black holes (BHs) with different angular momenta and electric-magnetic charges, but with the same Bekenstein-Hawking entropy. Through the Kerr/CFT correspondence (and its KN extension), a four-dimensional, asymptotically flat extremal KN BH is endowed with a dual thermal, two-dimensional conformal field theory (CFT) such that the Cardy entropy of the CFT is the same as the Bekenstein-Hawking entropy of the KN BH itself. Using this connection, we study the effect of the RFD on the thermal CFT dual to the KN extremal (or doubly-extremal) BH. We find that the RFD maps two different thermal, two-dimensional CFTs with different temperatures and central charges, but with the same asymptotic density of states, thereby matching the Cardy entropy. We also discuss the action of the RFD on doubly-extremal rotating BHs, finding a spurious branch in the non-rotating limit, and determining that for this class of BH solutions the image of the RFD necessarily over-rotates.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)057.pdf","citationCount":"0","resultStr":"{\"title\":\"Freudenthal duality in conformal field theory\",\"authors\":\"Arghya Chattopadhyay, Taniya Mandal, Alessio Marrani\",\"doi\":\"10.1007/JHEP11(2024)057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rotational Freudenthal duality (RFD) relates two extremal Kerr-Newman (KN) black holes (BHs) with different angular momenta and electric-magnetic charges, but with the same Bekenstein-Hawking entropy. Through the Kerr/CFT correspondence (and its KN extension), a four-dimensional, asymptotically flat extremal KN BH is endowed with a dual thermal, two-dimensional conformal field theory (CFT) such that the Cardy entropy of the CFT is the same as the Bekenstein-Hawking entropy of the KN BH itself. Using this connection, we study the effect of the RFD on the thermal CFT dual to the KN extremal (or doubly-extremal) BH. We find that the RFD maps two different thermal, two-dimensional CFTs with different temperatures and central charges, but with the same asymptotic density of states, thereby matching the Cardy entropy. We also discuss the action of the RFD on doubly-extremal rotating BHs, finding a spurious branch in the non-rotating limit, and determining that for this class of BH solutions the image of the RFD necessarily over-rotates.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2024 11\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)057.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP11(2024)057\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)057","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Rotational Freudenthal duality (RFD) relates two extremal Kerr-Newman (KN) black holes (BHs) with different angular momenta and electric-magnetic charges, but with the same Bekenstein-Hawking entropy. Through the Kerr/CFT correspondence (and its KN extension), a four-dimensional, asymptotically flat extremal KN BH is endowed with a dual thermal, two-dimensional conformal field theory (CFT) such that the Cardy entropy of the CFT is the same as the Bekenstein-Hawking entropy of the KN BH itself. Using this connection, we study the effect of the RFD on the thermal CFT dual to the KN extremal (or doubly-extremal) BH. We find that the RFD maps two different thermal, two-dimensional CFTs with different temperatures and central charges, but with the same asymptotic density of states, thereby matching the Cardy entropy. We also discuss the action of the RFD on doubly-extremal rotating BHs, finding a spurious branch in the non-rotating limit, and determining that for this class of BH solutions the image of the RFD necessarily over-rotates.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).