通过电化学方法了解用于溶血性贫血检测的正常盘状细胞悬浮液与球形细胞的区别

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Aindrila Roy;Debopam Bhattacharya;Payel Biswas;Subhadip Chakraborty;Rajen Haldar;Sanatan Chattopadhyay
{"title":"通过电化学方法了解用于溶血性贫血检测的正常盘状细胞悬浮液与球形细胞的区别","authors":"Aindrila Roy;Debopam Bhattacharya;Payel Biswas;Subhadip Chakraborty;Rajen Haldar;Sanatan Chattopadhyay","doi":"10.1109/LSENS.2024.3485699","DOIUrl":null,"url":null,"abstract":"Early diagnosis of hemolytic anemia, which often arises due to spherocytosis, is crucial for preventing severe health complications. This study demonstrates a possible approach to detect the condition by examining the electrochemical signatures of spherocyte suspensions. Cyclic voltammetry (CV) reveals distinct oxidation peaks at around 0.67 V for healthy discocytes and 0.72 V for spherocytes, with the latter exhibiting a lower oxidation current. This suggests reduced conversion of Fe\n<sup>2+</sup>\n to Fe\n<sup>3+</sup>\n state of hemoglobin likely due to impaired methemoglobin reductase activity and heightened hemoglobin oxidation in spherocytes. Co-oxidation studies and Raman spectroscopy reinforce such findings, thus confirming increased methemoglobin (Fe\n<sup>3+</sup>\n) in spherocytes, consequently promoting oxidative stress and cell lysis. Moreover, the electrochemical impedance spectroscopy (EIS) measurement shows higher impedance in spherocytes, which is attributed to their spherical symmetry that leads to weak dielectric properties. Thus, the proposed approach of electrochemical measurements by combining impedance spectroscopy and CV-derived oxidation rates is a promising cost-effective, low-volume (∼20 μL) diagnostic method for rapid and accurate detection of hemolytic anemia.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Understanding of the Difference Between Spherocytes Suspension From Normal Discocytes for Hemolytic Anemia Detection\",\"authors\":\"Aindrila Roy;Debopam Bhattacharya;Payel Biswas;Subhadip Chakraborty;Rajen Haldar;Sanatan Chattopadhyay\",\"doi\":\"10.1109/LSENS.2024.3485699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early diagnosis of hemolytic anemia, which often arises due to spherocytosis, is crucial for preventing severe health complications. This study demonstrates a possible approach to detect the condition by examining the electrochemical signatures of spherocyte suspensions. Cyclic voltammetry (CV) reveals distinct oxidation peaks at around 0.67 V for healthy discocytes and 0.72 V for spherocytes, with the latter exhibiting a lower oxidation current. This suggests reduced conversion of Fe\\n<sup>2+</sup>\\n to Fe\\n<sup>3+</sup>\\n state of hemoglobin likely due to impaired methemoglobin reductase activity and heightened hemoglobin oxidation in spherocytes. Co-oxidation studies and Raman spectroscopy reinforce such findings, thus confirming increased methemoglobin (Fe\\n<sup>3+</sup>\\n) in spherocytes, consequently promoting oxidative stress and cell lysis. Moreover, the electrochemical impedance spectroscopy (EIS) measurement shows higher impedance in spherocytes, which is attributed to their spherical symmetry that leads to weak dielectric properties. Thus, the proposed approach of electrochemical measurements by combining impedance spectroscopy and CV-derived oxidation rates is a promising cost-effective, low-volume (∼20 μL) diagnostic method for rapid and accurate detection of hemolytic anemia.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 12\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10733748/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10733748/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

溶血性贫血通常是由于球形红细胞增多症引起的,早期诊断溶血性贫血对于预防严重的健康并发症至关重要。本研究通过检测球形细胞悬浮液的电化学特征,展示了一种检测溶血性贫血的可行方法。循环伏安法(CV)显示,健康椎间盘细胞和球形细胞分别在 0.67 V 和 0.72 V 左右出现明显的氧化峰,后者的氧化电流较低。这表明在球形细胞中,由于高铁血红蛋白还原酶活性受损和血红蛋白氧化作用增强,血红蛋白中的 Fe2+ 向 Fe3+ 状态的转化减少。共氧化研究和拉曼光谱证实了这些发现,从而证实了球形细胞中高铁血红蛋白(Fe3+)增加,从而促进了氧化应激和细胞溶解。此外,电化学阻抗光谱(EIS)测量显示球形细胞的阻抗较高,这是因为球形细胞的球形对称性导致其介电特性较弱。因此,通过结合阻抗光谱和 CV 导出氧化率来进行电化学测量的方法是一种经济有效、低容量(20 ∼ 20 μL)的诊断方法,可用于快速准确地检测溶血性贫血。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemical Understanding of the Difference Between Spherocytes Suspension From Normal Discocytes for Hemolytic Anemia Detection
Early diagnosis of hemolytic anemia, which often arises due to spherocytosis, is crucial for preventing severe health complications. This study demonstrates a possible approach to detect the condition by examining the electrochemical signatures of spherocyte suspensions. Cyclic voltammetry (CV) reveals distinct oxidation peaks at around 0.67 V for healthy discocytes and 0.72 V for spherocytes, with the latter exhibiting a lower oxidation current. This suggests reduced conversion of Fe 2+ to Fe 3+ state of hemoglobin likely due to impaired methemoglobin reductase activity and heightened hemoglobin oxidation in spherocytes. Co-oxidation studies and Raman spectroscopy reinforce such findings, thus confirming increased methemoglobin (Fe 3+ ) in spherocytes, consequently promoting oxidative stress and cell lysis. Moreover, the electrochemical impedance spectroscopy (EIS) measurement shows higher impedance in spherocytes, which is attributed to their spherical symmetry that leads to weak dielectric properties. Thus, the proposed approach of electrochemical measurements by combining impedance spectroscopy and CV-derived oxidation rates is a promising cost-effective, low-volume (∼20 μL) diagnostic method for rapid and accurate detection of hemolytic anemia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信