DREAMx:针对由级联近似单元组成的加法器的数据驱动误差估计方法学

IF 2.7 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Muhammad Abdullah Hanif;Ayoub Arous;Muhammad Shafique
{"title":"DREAMx:针对由级联近似单元组成的加法器的数据驱动误差估计方法学","authors":"Muhammad Abdullah Hanif;Ayoub Arous;Muhammad Shafique","doi":"10.1109/TCAD.2024.3447209","DOIUrl":null,"url":null,"abstract":"Due to the significance and broad utilization of adders in computing systems, the design of low-power approximate adders (LPAAs) has received a significant amount of attention from the system design community. However, the selection and deployment of appropriate approximate modules require a thorough design space exploration, which is (in general) an extremely time-consuming process. Toward reducing the exploration time, different error estimation techniques have been proposed in the literature for evaluating the quality metrics of approximate adders. However, most of them are based on certain assumptions that limit the usability of such techniques for real-world settings. In this work, we highlight the impact of those assumptions on the quality of error estimates provided by the state-of-the-art techniques and how they limit the use of such techniques for real-world settings. Moreover, we highlight the significance of considering input data characteristics to improve the quality of error estimation. Based on our analysis, we propose a systematic data-driven error estimation methodology, DREAMx, for adders composed of cascaded approximate units, which covers a predominant set of LPAAs. DREAMx in principle factors in the dependence between input bits based on the given input distribution to compute the probability mass function (PMF) of error value at the output of an approximate adder. It achieves improved results compared to the state-of-the-art techniques while offering a substantial decrease in the overall execution(/exploration) time compared to exhaustive simulations. Our results further show that there exists a delicate tradeoff between the achievable quality of error estimates and the overall execution time.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"43 11","pages":"3348-3357"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DREAMx: A Data-Driven Error Estimation Methodology for Adders Composed of Cascaded Approximate Units\",\"authors\":\"Muhammad Abdullah Hanif;Ayoub Arous;Muhammad Shafique\",\"doi\":\"10.1109/TCAD.2024.3447209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the significance and broad utilization of adders in computing systems, the design of low-power approximate adders (LPAAs) has received a significant amount of attention from the system design community. However, the selection and deployment of appropriate approximate modules require a thorough design space exploration, which is (in general) an extremely time-consuming process. Toward reducing the exploration time, different error estimation techniques have been proposed in the literature for evaluating the quality metrics of approximate adders. However, most of them are based on certain assumptions that limit the usability of such techniques for real-world settings. In this work, we highlight the impact of those assumptions on the quality of error estimates provided by the state-of-the-art techniques and how they limit the use of such techniques for real-world settings. Moreover, we highlight the significance of considering input data characteristics to improve the quality of error estimation. Based on our analysis, we propose a systematic data-driven error estimation methodology, DREAMx, for adders composed of cascaded approximate units, which covers a predominant set of LPAAs. DREAMx in principle factors in the dependence between input bits based on the given input distribution to compute the probability mass function (PMF) of error value at the output of an approximate adder. It achieves improved results compared to the state-of-the-art techniques while offering a substantial decrease in the overall execution(/exploration) time compared to exhaustive simulations. Our results further show that there exists a delicate tradeoff between the achievable quality of error estimates and the overall execution time.\",\"PeriodicalId\":13251,\"journal\":{\"name\":\"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems\",\"volume\":\"43 11\",\"pages\":\"3348-3357\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10745866/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745866/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

由于加法器在计算系统中的重要性和广泛应用,低功耗近似加法器(LPAAs)的设计受到了系统设计界的极大关注。然而,选择和部署合适的近似模块需要对设计空间进行彻底探索,而这通常是一个极其耗时的过程。为了缩短探索时间,文献中提出了不同的误差估计技术,用于评估近似加法器的质量指标。然而,这些技术大多基于某些假设,限制了这些技术在实际环境中的可用性。在这项工作中,我们强调了这些假设对最先进技术所提供的误差估计质量的影响,以及它们如何限制了此类技术在实际环境中的应用。此外,我们还强调了考虑输入数据特征以提高误差估计质量的重要性。基于我们的分析,我们针对由级联近似单元组成的加法器提出了一种系统的数据驱动误差估计方法 DREAMx,它涵盖了一组主要的 LPAAs。DREAMx 原则上根据给定的输入分布,考虑输入位之间的依赖性,计算近似加法器输出端误差值的概率质量函数 (PMF)。与最先进的技术相比,它取得了更好的结果,同时与穷举模拟相比,大大减少了整体执行(/探索)时间。我们的研究结果进一步表明,在可实现的误差估计质量和总体执行时间之间存在着微妙的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DREAMx: A Data-Driven Error Estimation Methodology for Adders Composed of Cascaded Approximate Units
Due to the significance and broad utilization of adders in computing systems, the design of low-power approximate adders (LPAAs) has received a significant amount of attention from the system design community. However, the selection and deployment of appropriate approximate modules require a thorough design space exploration, which is (in general) an extremely time-consuming process. Toward reducing the exploration time, different error estimation techniques have been proposed in the literature for evaluating the quality metrics of approximate adders. However, most of them are based on certain assumptions that limit the usability of such techniques for real-world settings. In this work, we highlight the impact of those assumptions on the quality of error estimates provided by the state-of-the-art techniques and how they limit the use of such techniques for real-world settings. Moreover, we highlight the significance of considering input data characteristics to improve the quality of error estimation. Based on our analysis, we propose a systematic data-driven error estimation methodology, DREAMx, for adders composed of cascaded approximate units, which covers a predominant set of LPAAs. DREAMx in principle factors in the dependence between input bits based on the given input distribution to compute the probability mass function (PMF) of error value at the output of an approximate adder. It achieves improved results compared to the state-of-the-art techniques while offering a substantial decrease in the overall execution(/exploration) time compared to exhaustive simulations. Our results further show that there exists a delicate tradeoff between the achievable quality of error estimates and the overall execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
13.80%
发文量
500
审稿时长
7 months
期刊介绍: The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信