Shirley B. Wang, Ruben D. I. Van Genugten, Yaniv Yacoby, Weiwei Pan, Kate H. Bentley, Suzanne A. Bird, Ralph J. Buonopane, Alexis Christie, Merryn Daniel, Dylan DeMarco, Adam Haim, Lia Follet, Rebecca G. Fortgang, Flynn Kelly-Brunyak, Evan M. Kleiman, Alexander J. Millner, Onyinye Obi-Obasi, J. P. Onnela, Narise Ramlal, Jordyn R. Ricard, Jordan W. Smoller, Tida Tambedou, Kelly L. Zuromski, Matthew K. Nock
{"title":"利用实时监控数据建立个性化机器学习模型,预测特发性自杀想法","authors":"Shirley B. Wang, Ruben D. I. Van Genugten, Yaniv Yacoby, Weiwei Pan, Kate H. Bentley, Suzanne A. Bird, Ralph J. Buonopane, Alexis Christie, Merryn Daniel, Dylan DeMarco, Adam Haim, Lia Follet, Rebecca G. Fortgang, Flynn Kelly-Brunyak, Evan M. Kleiman, Alexander J. Millner, Onyinye Obi-Obasi, J. P. Onnela, Narise Ramlal, Jordyn R. Ricard, Jordan W. Smoller, Tida Tambedou, Kelly L. Zuromski, Matthew K. Nock","doi":"10.1038/s44220-024-00335-w","DOIUrl":null,"url":null,"abstract":"Suicide risk is highest immediately after psychiatric hospitalization, but the field lacks methods for identifying which patients are at greatest risk, and when. We built personalized models predicting suicidal thoughts after psychiatric hospital visits (N = 89 patients), using ecological momentary assessment (EMA; average EMA responses per participant = 311). We built several idiographic models, including baseline autoregressive and elastic net models (using single train/test split) and Gaussian process (GP) models (using an iterative rolling-forward prediction method). Simple GP models provided the best prediction of suicidal urges (R2average = 0.17), outperforming baseline autoregressive (R2average = 0.10) and elastic net (R2average = 0.06) models. Similarly, simple GP models provided the best prediction of suicidal intent (R2average = 0.12) compared to autoregressive (R2average = 0.08) and elastic net (R2average = 0.04). Here we show that idiographic prediction of suicidal thoughts is possible, although the accuracy is currently modest. Building GP models that iteratively update and learn symptom dynamics over time could provide important information to inform the development of just-in-time adaptive interventions. Using ecological monetary assessment, this study presents findings from idiographic models built to predict suicidal ideation in individuals after psychiatric hospitalization.","PeriodicalId":74247,"journal":{"name":"Nature mental health","volume":"2 11","pages":"1382-1391"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building personalized machine learning models using real-time monitoring data to predict idiographic suicidal thoughts\",\"authors\":\"Shirley B. Wang, Ruben D. I. Van Genugten, Yaniv Yacoby, Weiwei Pan, Kate H. Bentley, Suzanne A. Bird, Ralph J. Buonopane, Alexis Christie, Merryn Daniel, Dylan DeMarco, Adam Haim, Lia Follet, Rebecca G. Fortgang, Flynn Kelly-Brunyak, Evan M. Kleiman, Alexander J. Millner, Onyinye Obi-Obasi, J. P. Onnela, Narise Ramlal, Jordyn R. Ricard, Jordan W. Smoller, Tida Tambedou, Kelly L. Zuromski, Matthew K. Nock\",\"doi\":\"10.1038/s44220-024-00335-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suicide risk is highest immediately after psychiatric hospitalization, but the field lacks methods for identifying which patients are at greatest risk, and when. We built personalized models predicting suicidal thoughts after psychiatric hospital visits (N = 89 patients), using ecological momentary assessment (EMA; average EMA responses per participant = 311). We built several idiographic models, including baseline autoregressive and elastic net models (using single train/test split) and Gaussian process (GP) models (using an iterative rolling-forward prediction method). Simple GP models provided the best prediction of suicidal urges (R2average = 0.17), outperforming baseline autoregressive (R2average = 0.10) and elastic net (R2average = 0.06) models. Similarly, simple GP models provided the best prediction of suicidal intent (R2average = 0.12) compared to autoregressive (R2average = 0.08) and elastic net (R2average = 0.04). Here we show that idiographic prediction of suicidal thoughts is possible, although the accuracy is currently modest. Building GP models that iteratively update and learn symptom dynamics over time could provide important information to inform the development of just-in-time adaptive interventions. Using ecological monetary assessment, this study presents findings from idiographic models built to predict suicidal ideation in individuals after psychiatric hospitalization.\",\"PeriodicalId\":74247,\"journal\":{\"name\":\"Nature mental health\",\"volume\":\"2 11\",\"pages\":\"1382-1391\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature mental health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44220-024-00335-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature mental health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44220-024-00335-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
精神病患者住院后立即自杀的风险最高,但该领域缺乏识别哪些患者以及何时自杀风险最高的方法。我们利用生态瞬间评估(EMA;每位参与者的平均 EMA 反应 = 311)建立了预测精神病院就诊后自杀想法的个性化模型(N = 89 名患者)。我们建立了多个特异性模型,包括基线自回归模型和弹性网模型(使用单一训练/测试分割)以及高斯过程(GP)模型(使用迭代滚动前向预测方法)。简单的 GP 模型对自杀冲动的预测效果最好(R2average = 0.17),优于基线自回归模型(R2average = 0.10)和弹性网模型(R2average = 0.06)。同样,与自回归模型(R2 平均值 = 0.08)和弹性网模型(R2 平均值 = 0.04)相比,简单的 GP 模型对自杀意向的预测效果最好(R2 平均值 = 0.12)。我们在此表明,对自杀意念进行特异性预测是可能的,尽管其准确性目前并不高。建立能随着时间推移迭代更新和学习症状动态的 GP 模型,可为及时适应性干预措施的开发提供重要信息。本研究采用生态货币评估方法,介绍了为预测精神病患者住院后的自杀意念而建立的特异性模型的研究结果。
Building personalized machine learning models using real-time monitoring data to predict idiographic suicidal thoughts
Suicide risk is highest immediately after psychiatric hospitalization, but the field lacks methods for identifying which patients are at greatest risk, and when. We built personalized models predicting suicidal thoughts after psychiatric hospital visits (N = 89 patients), using ecological momentary assessment (EMA; average EMA responses per participant = 311). We built several idiographic models, including baseline autoregressive and elastic net models (using single train/test split) and Gaussian process (GP) models (using an iterative rolling-forward prediction method). Simple GP models provided the best prediction of suicidal urges (R2average = 0.17), outperforming baseline autoregressive (R2average = 0.10) and elastic net (R2average = 0.06) models. Similarly, simple GP models provided the best prediction of suicidal intent (R2average = 0.12) compared to autoregressive (R2average = 0.08) and elastic net (R2average = 0.04). Here we show that idiographic prediction of suicidal thoughts is possible, although the accuracy is currently modest. Building GP models that iteratively update and learn symptom dynamics over time could provide important information to inform the development of just-in-time adaptive interventions. Using ecological monetary assessment, this study presents findings from idiographic models built to predict suicidal ideation in individuals after psychiatric hospitalization.