Alexander Rau, Lea Michel, Ben Wilhelm, Vineet K. Raghu, Marco Reisert, Matthias Jung, Elias Kellner, Christopher L. Schlett, Hugo J. W. L. Aerts, Michael T. Lu, Fabian Bamberg, Jakob Weiss
{"title":"利用深度学习预测重度吸烟者因主动脉疾病导致的心血管疾病死亡率","authors":"Alexander Rau, Lea Michel, Ben Wilhelm, Vineet K. Raghu, Marco Reisert, Matthias Jung, Elias Kellner, Christopher L. Schlett, Hugo J. W. L. Aerts, Michael T. Lu, Fabian Bamberg, Jakob Weiss","doi":"10.1038/s44325-024-00029-3","DOIUrl":null,"url":null,"abstract":"Aortic angiopathy is a common manifestation of cardiovascular disease (CVD) and may serve as a surrogate marker of CVD burden. While the maximum aortic diameter is the primary prognostic measure, the potential of other features to improve risk prediction remains uncertain. This study developed a deep learning framework to automatically quantify thoracic aortic disease features and assessed their prognostic value in predicting CVD mortality among heavy smokers. Using non-contrast chest CTs from the National Lung Screening Trial (NLST), aortic features quantified included maximum diameter, volume, and calcification burden. Among 24,770 participants, 440 CVD deaths occurred over a mean 6.3-year follow-up. Aortic calcifications and volume were independently associated with CVD mortality, even after adjusting for traditional risk factors and coronary artery calcifications. These findings suggest that deep learning-derived aortic features could improve CVD risk prediction in high-risk populations, enabling more personalized prevention strategies.","PeriodicalId":501706,"journal":{"name":"npj Cardiovascular Health","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44325-024-00029-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep learning to predict cardiovascular mortality from aortic disease in heavy smokers\",\"authors\":\"Alexander Rau, Lea Michel, Ben Wilhelm, Vineet K. Raghu, Marco Reisert, Matthias Jung, Elias Kellner, Christopher L. Schlett, Hugo J. W. L. Aerts, Michael T. Lu, Fabian Bamberg, Jakob Weiss\",\"doi\":\"10.1038/s44325-024-00029-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aortic angiopathy is a common manifestation of cardiovascular disease (CVD) and may serve as a surrogate marker of CVD burden. While the maximum aortic diameter is the primary prognostic measure, the potential of other features to improve risk prediction remains uncertain. This study developed a deep learning framework to automatically quantify thoracic aortic disease features and assessed their prognostic value in predicting CVD mortality among heavy smokers. Using non-contrast chest CTs from the National Lung Screening Trial (NLST), aortic features quantified included maximum diameter, volume, and calcification burden. Among 24,770 participants, 440 CVD deaths occurred over a mean 6.3-year follow-up. Aortic calcifications and volume were independently associated with CVD mortality, even after adjusting for traditional risk factors and coronary artery calcifications. These findings suggest that deep learning-derived aortic features could improve CVD risk prediction in high-risk populations, enabling more personalized prevention strategies.\",\"PeriodicalId\":501706,\"journal\":{\"name\":\"npj Cardiovascular Health\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44325-024-00029-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Cardiovascular Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44325-024-00029-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Cardiovascular Health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44325-024-00029-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep learning to predict cardiovascular mortality from aortic disease in heavy smokers
Aortic angiopathy is a common manifestation of cardiovascular disease (CVD) and may serve as a surrogate marker of CVD burden. While the maximum aortic diameter is the primary prognostic measure, the potential of other features to improve risk prediction remains uncertain. This study developed a deep learning framework to automatically quantify thoracic aortic disease features and assessed their prognostic value in predicting CVD mortality among heavy smokers. Using non-contrast chest CTs from the National Lung Screening Trial (NLST), aortic features quantified included maximum diameter, volume, and calcification burden. Among 24,770 participants, 440 CVD deaths occurred over a mean 6.3-year follow-up. Aortic calcifications and volume were independently associated with CVD mortality, even after adjusting for traditional risk factors and coronary artery calcifications. These findings suggest that deep learning-derived aortic features could improve CVD risk prediction in high-risk populations, enabling more personalized prevention strategies.