利用深度学习预测重度吸烟者因主动脉疾病导致的心血管疾病死亡率

Alexander Rau, Lea Michel, Ben Wilhelm, Vineet K. Raghu, Marco Reisert, Matthias Jung, Elias Kellner, Christopher L. Schlett, Hugo J. W. L. Aerts, Michael T. Lu, Fabian Bamberg, Jakob Weiss
{"title":"利用深度学习预测重度吸烟者因主动脉疾病导致的心血管疾病死亡率","authors":"Alexander Rau, Lea Michel, Ben Wilhelm, Vineet K. Raghu, Marco Reisert, Matthias Jung, Elias Kellner, Christopher L. Schlett, Hugo J. W. L. Aerts, Michael T. Lu, Fabian Bamberg, Jakob Weiss","doi":"10.1038/s44325-024-00029-3","DOIUrl":null,"url":null,"abstract":"Aortic angiopathy is a common manifestation of cardiovascular disease (CVD) and may serve as a surrogate marker of CVD burden. While the maximum aortic diameter is the primary prognostic measure, the potential of other features to improve risk prediction remains uncertain. This study developed a deep learning framework to automatically quantify thoracic aortic disease features and assessed their prognostic value in predicting CVD mortality among heavy smokers. Using non-contrast chest CTs from the National Lung Screening Trial (NLST), aortic features quantified included maximum diameter, volume, and calcification burden. Among 24,770 participants, 440 CVD deaths occurred over a mean 6.3-year follow-up. Aortic calcifications and volume were independently associated with CVD mortality, even after adjusting for traditional risk factors and coronary artery calcifications. These findings suggest that deep learning-derived aortic features could improve CVD risk prediction in high-risk populations, enabling more personalized prevention strategies.","PeriodicalId":501706,"journal":{"name":"npj Cardiovascular Health","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44325-024-00029-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep learning to predict cardiovascular mortality from aortic disease in heavy smokers\",\"authors\":\"Alexander Rau, Lea Michel, Ben Wilhelm, Vineet K. Raghu, Marco Reisert, Matthias Jung, Elias Kellner, Christopher L. Schlett, Hugo J. W. L. Aerts, Michael T. Lu, Fabian Bamberg, Jakob Weiss\",\"doi\":\"10.1038/s44325-024-00029-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aortic angiopathy is a common manifestation of cardiovascular disease (CVD) and may serve as a surrogate marker of CVD burden. While the maximum aortic diameter is the primary prognostic measure, the potential of other features to improve risk prediction remains uncertain. This study developed a deep learning framework to automatically quantify thoracic aortic disease features and assessed their prognostic value in predicting CVD mortality among heavy smokers. Using non-contrast chest CTs from the National Lung Screening Trial (NLST), aortic features quantified included maximum diameter, volume, and calcification burden. Among 24,770 participants, 440 CVD deaths occurred over a mean 6.3-year follow-up. Aortic calcifications and volume were independently associated with CVD mortality, even after adjusting for traditional risk factors and coronary artery calcifications. These findings suggest that deep learning-derived aortic features could improve CVD risk prediction in high-risk populations, enabling more personalized prevention strategies.\",\"PeriodicalId\":501706,\"journal\":{\"name\":\"npj Cardiovascular Health\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44325-024-00029-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Cardiovascular Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44325-024-00029-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Cardiovascular Health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44325-024-00029-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主动脉血管病变是心血管疾病(CVD)的常见表现,可作为心血管疾病负担的替代标志物。虽然主动脉最大直径是主要的预后指标,但其他特征在改善风险预测方面的潜力仍不确定。本研究开发了一种深度学习框架,用于自动量化胸主动脉疾病特征,并评估其在预测重度吸烟者心血管疾病死亡率方面的预后价值。利用国家肺筛查试验(NLST)的非对比胸部 CT,量化的主动脉特征包括最大直径、体积和钙化负荷。在 24,770 名参与者中,有 440 人在平均 6.3 年的随访期间死于心血管疾病。即使对传统风险因素和冠状动脉钙化进行调整后,主动脉钙化和体积仍与心血管疾病死亡率独立相关。这些研究结果表明,深度学习衍生的主动脉特征可以改善高危人群的心血管疾病风险预测,从而制定更加个性化的预防策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning to predict cardiovascular mortality from aortic disease in heavy smokers

Deep learning to predict cardiovascular mortality from aortic disease in heavy smokers
Aortic angiopathy is a common manifestation of cardiovascular disease (CVD) and may serve as a surrogate marker of CVD burden. While the maximum aortic diameter is the primary prognostic measure, the potential of other features to improve risk prediction remains uncertain. This study developed a deep learning framework to automatically quantify thoracic aortic disease features and assessed their prognostic value in predicting CVD mortality among heavy smokers. Using non-contrast chest CTs from the National Lung Screening Trial (NLST), aortic features quantified included maximum diameter, volume, and calcification burden. Among 24,770 participants, 440 CVD deaths occurred over a mean 6.3-year follow-up. Aortic calcifications and volume were independently associated with CVD mortality, even after adjusting for traditional risk factors and coronary artery calcifications. These findings suggest that deep learning-derived aortic features could improve CVD risk prediction in high-risk populations, enabling more personalized prevention strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信