{"title":"自适应复系数滤波扩展状态观测器型三相增强锁相环","authors":"Baojun Ge, Shuo Huang, Minghui Wang, Yue Wang, Pin Lv","doi":"10.1049/pel2.12765","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes an adaptive complex coefficient filtered (CCF) full order extended state observer (ESO) type three phase enhanced phase locked loop (EPLL), which is employed in matrix reactance frequency converter (MRFC) for rotating vectors measurement estimation. EPLL phase detector was analysed first to track not only the rad frequency and transient phase, but also the amplitude of the rotating vectors. Full order ESO can filter out more high frequency disturbance, so it can track frequency and phase more accurately than proportion and integration algorithm. CCF modules were analysed in theory to attenuate the disturbance within two times of the EPLL's cut-off frequency. The whole adaptive CCF-ESO-EPLL design, including stability and parameter tuning were then interpreted. The proposed CCF-ESO-EPLL adapts the estimated frequency with CCF to attenuate the MRFC switching non-linear disturbance as well as unknown disturbance by the full order ESO. The MRFC topology necessary measured vectors, as well as the input side reactive power adjustment capacity, were discussed. The theoretical conclusion has been verified on a MRFC prototype. The proposed CCF-ESO-EPLL has less parameter tuning, less computation resource requirement, better steady and dynamic performance, and outstanding disturbance robustness.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12765","citationCount":"0","resultStr":"{\"title\":\"Adaptive complex coefficient-filtered extended states observer type three-phase enhanced phase-locked loop\",\"authors\":\"Baojun Ge, Shuo Huang, Minghui Wang, Yue Wang, Pin Lv\",\"doi\":\"10.1049/pel2.12765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes an adaptive complex coefficient filtered (CCF) full order extended state observer (ESO) type three phase enhanced phase locked loop (EPLL), which is employed in matrix reactance frequency converter (MRFC) for rotating vectors measurement estimation. EPLL phase detector was analysed first to track not only the rad frequency and transient phase, but also the amplitude of the rotating vectors. Full order ESO can filter out more high frequency disturbance, so it can track frequency and phase more accurately than proportion and integration algorithm. CCF modules were analysed in theory to attenuate the disturbance within two times of the EPLL's cut-off frequency. The whole adaptive CCF-ESO-EPLL design, including stability and parameter tuning were then interpreted. The proposed CCF-ESO-EPLL adapts the estimated frequency with CCF to attenuate the MRFC switching non-linear disturbance as well as unknown disturbance by the full order ESO. The MRFC topology necessary measured vectors, as well as the input side reactive power adjustment capacity, were discussed. The theoretical conclusion has been verified on a MRFC prototype. The proposed CCF-ESO-EPLL has less parameter tuning, less computation resource requirement, better steady and dynamic performance, and outstanding disturbance robustness.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12765\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12765\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12765","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Adaptive complex coefficient-filtered extended states observer type three-phase enhanced phase-locked loop
This paper proposes an adaptive complex coefficient filtered (CCF) full order extended state observer (ESO) type three phase enhanced phase locked loop (EPLL), which is employed in matrix reactance frequency converter (MRFC) for rotating vectors measurement estimation. EPLL phase detector was analysed first to track not only the rad frequency and transient phase, but also the amplitude of the rotating vectors. Full order ESO can filter out more high frequency disturbance, so it can track frequency and phase more accurately than proportion and integration algorithm. CCF modules were analysed in theory to attenuate the disturbance within two times of the EPLL's cut-off frequency. The whole adaptive CCF-ESO-EPLL design, including stability and parameter tuning were then interpreted. The proposed CCF-ESO-EPLL adapts the estimated frequency with CCF to attenuate the MRFC switching non-linear disturbance as well as unknown disturbance by the full order ESO. The MRFC topology necessary measured vectors, as well as the input side reactive power adjustment capacity, were discussed. The theoretical conclusion has been verified on a MRFC prototype. The proposed CCF-ESO-EPLL has less parameter tuning, less computation resource requirement, better steady and dynamic performance, and outstanding disturbance robustness.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.