{"title":"Cu/H-ZSM-5:一种高活性、高选择性催化剂,用于从生物质衍生的白桦脂酸中生产γ-戊内酯","authors":"Vijayanand Perupogu, Suresh Babu Gadamani, Rajendiran Rajesh, Putra Kumar Balla, Shyamala Pulipaka, Srinivasa Rao Pinapati, Lingaiah Nakka","doi":"10.1007/s12039-024-02317-y","DOIUrl":null,"url":null,"abstract":"<div><p>Investigating alternative energy sources is now crucial since the topic of climate action is growing in significance. One of the most promising renewable biomass feedstocks is levulinic acid (LA), which can be converted via an intermediary called <i>γ</i>-valerolactone (GVL) into value-added products. This study examined the hydrogenation of levulinic acid to <i>γ</i>-valerolactone using various copper-supported H–ZSM-5 catalysts with different Cu loadings (2–30 wt%) that were synthesized using a simple impregnation technique. The synthesized catalyst's morphological and chemical structure was examined using a variety of techniques, including XRD, N<sub>2</sub> adsorption-desorption, TPR, TPD–NH<sub>3</sub>, and N<sub>2</sub>O titration. Overall, at 265°C and 30 hours of time on stream (TOS), 5 Cu/H–ZSM-5 showed the best conversion (87%) and selectivity (83%).</p><h3>Graphical Abstract</h3><p>One of the most promising renewable biomass feedstocks is levulinic acid (LA), which can be converted via an intermediary called <i>γ</i>-valerolactone (GVL) into value-added products. This study examined the hydrogenation of levulinic acid to <i>γ</i>-valerolactone using copper-supported H–ZSM-5 catalysts with different Cu loadings.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu/H–ZSM-5: A highly active and selective catalyst for the production of γ-valerolactone from biomass-derived levulinic acid\",\"authors\":\"Vijayanand Perupogu, Suresh Babu Gadamani, Rajendiran Rajesh, Putra Kumar Balla, Shyamala Pulipaka, Srinivasa Rao Pinapati, Lingaiah Nakka\",\"doi\":\"10.1007/s12039-024-02317-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Investigating alternative energy sources is now crucial since the topic of climate action is growing in significance. One of the most promising renewable biomass feedstocks is levulinic acid (LA), which can be converted via an intermediary called <i>γ</i>-valerolactone (GVL) into value-added products. This study examined the hydrogenation of levulinic acid to <i>γ</i>-valerolactone using various copper-supported H–ZSM-5 catalysts with different Cu loadings (2–30 wt%) that were synthesized using a simple impregnation technique. The synthesized catalyst's morphological and chemical structure was examined using a variety of techniques, including XRD, N<sub>2</sub> adsorption-desorption, TPR, TPD–NH<sub>3</sub>, and N<sub>2</sub>O titration. Overall, at 265°C and 30 hours of time on stream (TOS), 5 Cu/H–ZSM-5 showed the best conversion (87%) and selectivity (83%).</p><h3>Graphical Abstract</h3><p>One of the most promising renewable biomass feedstocks is levulinic acid (LA), which can be converted via an intermediary called <i>γ</i>-valerolactone (GVL) into value-added products. This study examined the hydrogenation of levulinic acid to <i>γ</i>-valerolactone using copper-supported H–ZSM-5 catalysts with different Cu loadings.</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":616,\"journal\":{\"name\":\"Journal of Chemical Sciences\",\"volume\":\"136 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12039-024-02317-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02317-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cu/H–ZSM-5: A highly active and selective catalyst for the production of γ-valerolactone from biomass-derived levulinic acid
Investigating alternative energy sources is now crucial since the topic of climate action is growing in significance. One of the most promising renewable biomass feedstocks is levulinic acid (LA), which can be converted via an intermediary called γ-valerolactone (GVL) into value-added products. This study examined the hydrogenation of levulinic acid to γ-valerolactone using various copper-supported H–ZSM-5 catalysts with different Cu loadings (2–30 wt%) that were synthesized using a simple impregnation technique. The synthesized catalyst's morphological and chemical structure was examined using a variety of techniques, including XRD, N2 adsorption-desorption, TPR, TPD–NH3, and N2O titration. Overall, at 265°C and 30 hours of time on stream (TOS), 5 Cu/H–ZSM-5 showed the best conversion (87%) and selectivity (83%).
Graphical Abstract
One of the most promising renewable biomass feedstocks is levulinic acid (LA), which can be converted via an intermediary called γ-valerolactone (GVL) into value-added products. This study examined the hydrogenation of levulinic acid to γ-valerolactone using copper-supported H–ZSM-5 catalysts with different Cu loadings.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.