Rama Pal, Truptimayee Suna, N. L. Kushwaha, I. Rashmi, M. Madhu
{"title":"基于 HYDRUS 的 CW2D 湿地模块的应用:综述","authors":"Rama Pal, Truptimayee Suna, N. L. Kushwaha, I. Rashmi, M. Madhu","doi":"10.1007/s11270-024-07577-5","DOIUrl":null,"url":null,"abstract":"<div><p>Constructed wetlands are becoming increasingly popular around the world to remove nutrients, organics, trace elements, pathogens, and other contaminants from wastewater and/or runoff water. Generally constructed wetlands can be built considering several designs connected to the flow which can be either saturated or unsaturated, vertical or horizontal, surface or subsurface and all the possible combinations. The CW2D (Constructed Wetlands 2D) multi-component reactive transport module was developed as an extension of the Hydrus-2D. CW2D was created to simulate biochemical transformation and degradation processes for organic matter, nitrogen and phosphorus in constructed wetlands with subsurface flow. The IWA Activated Sludge Models, which use monod-type expressions to describe the process rates, serve as the foundation for the mathematical structure of CW2D. All process rates and diffusion coefficients are temperature dependent. The biochemical components included in CW2D are dissolved oxygen, three fractions of organic matter (readily- and slowly-biodegradable, and inert), four nitrogen compounds (ammonium, nitrite, nitrate, and dinitrogen), inorganic phosphorus, and autotrophic and heterotrophic micro-organisms. Considering the background knowledge, the review provides recent applications of CW2D module with HYDRUS for simulation of wastewater treatment performance of constructed wetlands and suggests the possibility of addition of more features in CW2D module for more realistic simulation outcomes.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"235 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of HYDRUS Based CW2D Wetland Module: a Review\",\"authors\":\"Rama Pal, Truptimayee Suna, N. L. Kushwaha, I. Rashmi, M. Madhu\",\"doi\":\"10.1007/s11270-024-07577-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Constructed wetlands are becoming increasingly popular around the world to remove nutrients, organics, trace elements, pathogens, and other contaminants from wastewater and/or runoff water. Generally constructed wetlands can be built considering several designs connected to the flow which can be either saturated or unsaturated, vertical or horizontal, surface or subsurface and all the possible combinations. The CW2D (Constructed Wetlands 2D) multi-component reactive transport module was developed as an extension of the Hydrus-2D. CW2D was created to simulate biochemical transformation and degradation processes for organic matter, nitrogen and phosphorus in constructed wetlands with subsurface flow. The IWA Activated Sludge Models, which use monod-type expressions to describe the process rates, serve as the foundation for the mathematical structure of CW2D. All process rates and diffusion coefficients are temperature dependent. The biochemical components included in CW2D are dissolved oxygen, three fractions of organic matter (readily- and slowly-biodegradable, and inert), four nitrogen compounds (ammonium, nitrite, nitrate, and dinitrogen), inorganic phosphorus, and autotrophic and heterotrophic micro-organisms. Considering the background knowledge, the review provides recent applications of CW2D module with HYDRUS for simulation of wastewater treatment performance of constructed wetlands and suggests the possibility of addition of more features in CW2D module for more realistic simulation outcomes.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"235 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07577-5\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07577-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Applications of HYDRUS Based CW2D Wetland Module: a Review
Constructed wetlands are becoming increasingly popular around the world to remove nutrients, organics, trace elements, pathogens, and other contaminants from wastewater and/or runoff water. Generally constructed wetlands can be built considering several designs connected to the flow which can be either saturated or unsaturated, vertical or horizontal, surface or subsurface and all the possible combinations. The CW2D (Constructed Wetlands 2D) multi-component reactive transport module was developed as an extension of the Hydrus-2D. CW2D was created to simulate biochemical transformation and degradation processes for organic matter, nitrogen and phosphorus in constructed wetlands with subsurface flow. The IWA Activated Sludge Models, which use monod-type expressions to describe the process rates, serve as the foundation for the mathematical structure of CW2D. All process rates and diffusion coefficients are temperature dependent. The biochemical components included in CW2D are dissolved oxygen, three fractions of organic matter (readily- and slowly-biodegradable, and inert), four nitrogen compounds (ammonium, nitrite, nitrate, and dinitrogen), inorganic phosphorus, and autotrophic and heterotrophic micro-organisms. Considering the background knowledge, the review provides recent applications of CW2D module with HYDRUS for simulation of wastewater treatment performance of constructed wetlands and suggests the possibility of addition of more features in CW2D module for more realistic simulation outcomes.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.