{"title":"基于虚拟粘结模型的水泥灌浆料触变性分析","authors":"Haizhi Zang, Shanyong Wang, John P. Carter","doi":"10.1007/s11440-024-02417-6","DOIUrl":null,"url":null,"abstract":"<div><p>Thixotropy of cementitious materials is a crucial intrinsic property that determines the flowability and workability of cement-based grout. A novel virtual bond model of cement particles is developed in this paper to depict the thixotropy of cement grout. A particulate description of the reversible and erasable interparticle bonds is established based on experimental observations with a focus on the non-contact interactions mainly contributed in practice by calcium silicate hydrates (C–S–H). The structural breakdown of the cement network is realized through bonds breakage under applied motion, and the bonding network recovers with regeneration of interparticle connections that involve reversible hydrate reactions in the mixture. The balance between bond rupture and rebuilding can be tuned by assigning different strength limits for bond breakage. We have implemented this model in the open-source code Yade to carry out 3D discrete element method simulations of a rotational vane system filled with spherical particles, and the results show good agreement with experimental data. The modelling results reveal the transition from a solid-like structure to a fluid-like medium within cement suspensions caused by the evolution of broken interparticle bonds. The results also provide a distinct view of thixotropic variation upon disturbance. This model is extendable to other cohesive materials providing an explicit physical definition of the interparticle interactions. It also provides a theoretical explanation for the empirical estimations of thixotropy common in engineering industries and a potential means of measuring cementitious granular flow that may be useful in future studies.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 11","pages":"7427 - 7450"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11440-024-02417-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis of thixotropy of cement grout based on a virtual bond model\",\"authors\":\"Haizhi Zang, Shanyong Wang, John P. Carter\",\"doi\":\"10.1007/s11440-024-02417-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thixotropy of cementitious materials is a crucial intrinsic property that determines the flowability and workability of cement-based grout. A novel virtual bond model of cement particles is developed in this paper to depict the thixotropy of cement grout. A particulate description of the reversible and erasable interparticle bonds is established based on experimental observations with a focus on the non-contact interactions mainly contributed in practice by calcium silicate hydrates (C–S–H). The structural breakdown of the cement network is realized through bonds breakage under applied motion, and the bonding network recovers with regeneration of interparticle connections that involve reversible hydrate reactions in the mixture. The balance between bond rupture and rebuilding can be tuned by assigning different strength limits for bond breakage. We have implemented this model in the open-source code Yade to carry out 3D discrete element method simulations of a rotational vane system filled with spherical particles, and the results show good agreement with experimental data. The modelling results reveal the transition from a solid-like structure to a fluid-like medium within cement suspensions caused by the evolution of broken interparticle bonds. The results also provide a distinct view of thixotropic variation upon disturbance. This model is extendable to other cohesive materials providing an explicit physical definition of the interparticle interactions. It also provides a theoretical explanation for the empirical estimations of thixotropy common in engineering industries and a potential means of measuring cementitious granular flow that may be useful in future studies.</p></div>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":\"19 11\",\"pages\":\"7427 - 7450\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11440-024-02417-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11440-024-02417-6\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02417-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Analysis of thixotropy of cement grout based on a virtual bond model
Thixotropy of cementitious materials is a crucial intrinsic property that determines the flowability and workability of cement-based grout. A novel virtual bond model of cement particles is developed in this paper to depict the thixotropy of cement grout. A particulate description of the reversible and erasable interparticle bonds is established based on experimental observations with a focus on the non-contact interactions mainly contributed in practice by calcium silicate hydrates (C–S–H). The structural breakdown of the cement network is realized through bonds breakage under applied motion, and the bonding network recovers with regeneration of interparticle connections that involve reversible hydrate reactions in the mixture. The balance between bond rupture and rebuilding can be tuned by assigning different strength limits for bond breakage. We have implemented this model in the open-source code Yade to carry out 3D discrete element method simulations of a rotational vane system filled with spherical particles, and the results show good agreement with experimental data. The modelling results reveal the transition from a solid-like structure to a fluid-like medium within cement suspensions caused by the evolution of broken interparticle bonds. The results also provide a distinct view of thixotropic variation upon disturbance. This model is extendable to other cohesive materials providing an explicit physical definition of the interparticle interactions. It also provides a theoretical explanation for the empirical estimations of thixotropy common in engineering industries and a potential means of measuring cementitious granular flow that may be useful in future studies.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.