{"title":"表面接枝对通过纳米光斑的油水混合物的影响:分子动力学模拟研究","authors":"Wende Tian, Yanwei Wang, Zhexenbek Toktarbay","doi":"10.1007/s42114-024-01055-6","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene oxide-based membranes hold great promise in composite materials for applications such as wastewater treatment and oil–water separation. In this study, classical molecular dynamics simulations were employed to investigate the separation of water from an oil–water mixture using a two-layer graphene oxide membrane. The effects of random and stripe-like grafting patterns on penetration efficiency were explored, focusing on varying grafting densities. The results show that increasing grafting density reduces permeability of both oil and water molecules, highlighting the critical role of surface functionalization in membrane design. Notably, the stripe grafting pattern significantly enhances penetration efficiency by optimizing steric interactions around the nanoslit. These findings contribute to the development of nanocomposite materials and surface modification techniques, offering insights into the design of membranes with high performance for oil–water separation. Understanding relationship between grafting density, surface patterning, and membrane performance is crucial for advancing hybrid materials that address industrial challenges such as wastewater treatment and oil spill remediation. The insights gained from this study can be further refined by exploring different functional groups and surface modifications, broadening the applications of these membranes in industrial separation processes.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of surface grafting on the oil–water mixture passing through a nanoslit: a molecular dynamics simulation study\",\"authors\":\"Wende Tian, Yanwei Wang, Zhexenbek Toktarbay\",\"doi\":\"10.1007/s42114-024-01055-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graphene oxide-based membranes hold great promise in composite materials for applications such as wastewater treatment and oil–water separation. In this study, classical molecular dynamics simulations were employed to investigate the separation of water from an oil–water mixture using a two-layer graphene oxide membrane. The effects of random and stripe-like grafting patterns on penetration efficiency were explored, focusing on varying grafting densities. The results show that increasing grafting density reduces permeability of both oil and water molecules, highlighting the critical role of surface functionalization in membrane design. Notably, the stripe grafting pattern significantly enhances penetration efficiency by optimizing steric interactions around the nanoslit. These findings contribute to the development of nanocomposite materials and surface modification techniques, offering insights into the design of membranes with high performance for oil–water separation. Understanding relationship between grafting density, surface patterning, and membrane performance is crucial for advancing hybrid materials that address industrial challenges such as wastewater treatment and oil spill remediation. The insights gained from this study can be further refined by exploring different functional groups and surface modifications, broadening the applications of these membranes in industrial separation processes.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01055-6\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01055-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Effect of surface grafting on the oil–water mixture passing through a nanoslit: a molecular dynamics simulation study
Graphene oxide-based membranes hold great promise in composite materials for applications such as wastewater treatment and oil–water separation. In this study, classical molecular dynamics simulations were employed to investigate the separation of water from an oil–water mixture using a two-layer graphene oxide membrane. The effects of random and stripe-like grafting patterns on penetration efficiency were explored, focusing on varying grafting densities. The results show that increasing grafting density reduces permeability of both oil and water molecules, highlighting the critical role of surface functionalization in membrane design. Notably, the stripe grafting pattern significantly enhances penetration efficiency by optimizing steric interactions around the nanoslit. These findings contribute to the development of nanocomposite materials and surface modification techniques, offering insights into the design of membranes with high performance for oil–water separation. Understanding relationship between grafting density, surface patterning, and membrane performance is crucial for advancing hybrid materials that address industrial challenges such as wastewater treatment and oil spill remediation. The insights gained from this study can be further refined by exploring different functional groups and surface modifications, broadening the applications of these membranes in industrial separation processes.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.