{"title":"将废弃蛋壳粉作为硅酸盐水泥中石灰石替代品的评估","authors":"Beng Wei Chong, Pratik Gujar, Xijun Shi, Prannoy Suraneni","doi":"10.1617/s11527-024-02478-9","DOIUrl":null,"url":null,"abstract":"<div><p>The decarbonization of the concrete industry is an ongoing pursuit. One solution towards this goal is the use of limestone powder in portland cement. Waste eggshell has tremendous potential as an alternative calcite filler in cement due to its similarities with limestone. In this research, the feasibility of adding 15% and 35% ground eggshell in portland cement to make cement mortars was investigated. The hydration mechanism of eggshell and limestone blended cements was compared through the heat of hydration, phase assemblage, electrical resistivity, compressive strength, and shrinkage measurements. The experimental results showed that cement mortars with ground eggshell attained similar compressive strength as that with limestone. However, eggshell mixtures demand more mixing water to compensate the hydrophobicity of the eggshell membrane. The high calcite content in both eggshell and limestone accelerates the hydration of cement at 15% replacement, but ground eggshell retards cement hydration at 35% replacement due to the dominant influence of the membrane. Overall, eggshell waste is a feasible sustainable alternative to limestone powder at up to 15% portland cement replacement levels. Lifecycle assessment and cost analysis showed that adding 15% ground eggshell in cement concrete further reduces its embodied carbon and energy and cost compared to cement concrete containing limestone powder.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"57 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02478-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessment of waste eggshell powder as a limestone alternative in portland cement\",\"authors\":\"Beng Wei Chong, Pratik Gujar, Xijun Shi, Prannoy Suraneni\",\"doi\":\"10.1617/s11527-024-02478-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The decarbonization of the concrete industry is an ongoing pursuit. One solution towards this goal is the use of limestone powder in portland cement. Waste eggshell has tremendous potential as an alternative calcite filler in cement due to its similarities with limestone. In this research, the feasibility of adding 15% and 35% ground eggshell in portland cement to make cement mortars was investigated. The hydration mechanism of eggshell and limestone blended cements was compared through the heat of hydration, phase assemblage, electrical resistivity, compressive strength, and shrinkage measurements. The experimental results showed that cement mortars with ground eggshell attained similar compressive strength as that with limestone. However, eggshell mixtures demand more mixing water to compensate the hydrophobicity of the eggshell membrane. The high calcite content in both eggshell and limestone accelerates the hydration of cement at 15% replacement, but ground eggshell retards cement hydration at 35% replacement due to the dominant influence of the membrane. Overall, eggshell waste is a feasible sustainable alternative to limestone powder at up to 15% portland cement replacement levels. Lifecycle assessment and cost analysis showed that adding 15% ground eggshell in cement concrete further reduces its embodied carbon and energy and cost compared to cement concrete containing limestone powder.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"57 10\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1617/s11527-024-02478-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-024-02478-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02478-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Assessment of waste eggshell powder as a limestone alternative in portland cement
The decarbonization of the concrete industry is an ongoing pursuit. One solution towards this goal is the use of limestone powder in portland cement. Waste eggshell has tremendous potential as an alternative calcite filler in cement due to its similarities with limestone. In this research, the feasibility of adding 15% and 35% ground eggshell in portland cement to make cement mortars was investigated. The hydration mechanism of eggshell and limestone blended cements was compared through the heat of hydration, phase assemblage, electrical resistivity, compressive strength, and shrinkage measurements. The experimental results showed that cement mortars with ground eggshell attained similar compressive strength as that with limestone. However, eggshell mixtures demand more mixing water to compensate the hydrophobicity of the eggshell membrane. The high calcite content in both eggshell and limestone accelerates the hydration of cement at 15% replacement, but ground eggshell retards cement hydration at 35% replacement due to the dominant influence of the membrane. Overall, eggshell waste is a feasible sustainable alternative to limestone powder at up to 15% portland cement replacement levels. Lifecycle assessment and cost analysis showed that adding 15% ground eggshell in cement concrete further reduces its embodied carbon and energy and cost compared to cement concrete containing limestone powder.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.