Pengkang Zhang, Bangguo Liu, Tao Zhao, Jiayu Yu, Xiaoyun Ye, Xiurong Chen
{"title":"通过催化臭氧工艺降解煤气化废水中的典型氮杂环化合物","authors":"Pengkang Zhang, Bangguo Liu, Tao Zhao, Jiayu Yu, Xiaoyun Ye, Xiurong Chen","doi":"10.1007/s11270-024-07516-4","DOIUrl":null,"url":null,"abstract":"<div><p>Reverse osmosis is a critical step in the pursuit of zero discharge for coal gasification wastewater treatment; however, the high-salt concentrates generated in this process contain refractory organic compounds, such as indole, quinoline, and pyridine, which pose significant challenges for salt recovery. In this study, catalytic ozonation using a novel Cu-Co-Mn/activated carbon catalyst was introduced to efficiently degrade these persistent organic pollutants. The optimized conditions were a pH of 9.0, a catalyst dosage of 1.3 g/L, and an ozone dosage of 1.0 g/L. Our findings reveal that the catalytic effect promotes the accumulation of hydroxyl-free radicals, which provide the necessary energy for effective degradation. The removal efficiencies of indole, quinoline, and pyridine by catalytic ozonation were remarkably high at 92.31%, 90.56%, and 80.63%, respectively. Pyridine, identified as the most resistant compound, had its electronic structure calculated using density functional theory (DFT) with Gaussian 09 software, offering new insights into the underlying degradation processes. The results demonstrate that the novel catalyst significantly boosts ozonation efficiency, offering a promising approach for treating high-salt coal gasification wastewater.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"235 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation of Typical Nitrogen-Heterocyclic Compounds in Coal Gasification Wastewater via Catalytic Ozonation Processes\",\"authors\":\"Pengkang Zhang, Bangguo Liu, Tao Zhao, Jiayu Yu, Xiaoyun Ye, Xiurong Chen\",\"doi\":\"10.1007/s11270-024-07516-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reverse osmosis is a critical step in the pursuit of zero discharge for coal gasification wastewater treatment; however, the high-salt concentrates generated in this process contain refractory organic compounds, such as indole, quinoline, and pyridine, which pose significant challenges for salt recovery. In this study, catalytic ozonation using a novel Cu-Co-Mn/activated carbon catalyst was introduced to efficiently degrade these persistent organic pollutants. The optimized conditions were a pH of 9.0, a catalyst dosage of 1.3 g/L, and an ozone dosage of 1.0 g/L. Our findings reveal that the catalytic effect promotes the accumulation of hydroxyl-free radicals, which provide the necessary energy for effective degradation. The removal efficiencies of indole, quinoline, and pyridine by catalytic ozonation were remarkably high at 92.31%, 90.56%, and 80.63%, respectively. Pyridine, identified as the most resistant compound, had its electronic structure calculated using density functional theory (DFT) with Gaussian 09 software, offering new insights into the underlying degradation processes. The results demonstrate that the novel catalyst significantly boosts ozonation efficiency, offering a promising approach for treating high-salt coal gasification wastewater.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"235 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07516-4\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07516-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Degradation of Typical Nitrogen-Heterocyclic Compounds in Coal Gasification Wastewater via Catalytic Ozonation Processes
Reverse osmosis is a critical step in the pursuit of zero discharge for coal gasification wastewater treatment; however, the high-salt concentrates generated in this process contain refractory organic compounds, such as indole, quinoline, and pyridine, which pose significant challenges for salt recovery. In this study, catalytic ozonation using a novel Cu-Co-Mn/activated carbon catalyst was introduced to efficiently degrade these persistent organic pollutants. The optimized conditions were a pH of 9.0, a catalyst dosage of 1.3 g/L, and an ozone dosage of 1.0 g/L. Our findings reveal that the catalytic effect promotes the accumulation of hydroxyl-free radicals, which provide the necessary energy for effective degradation. The removal efficiencies of indole, quinoline, and pyridine by catalytic ozonation were remarkably high at 92.31%, 90.56%, and 80.63%, respectively. Pyridine, identified as the most resistant compound, had its electronic structure calculated using density functional theory (DFT) with Gaussian 09 software, offering new insights into the underlying degradation processes. The results demonstrate that the novel catalyst significantly boosts ozonation efficiency, offering a promising approach for treating high-salt coal gasification wastewater.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.