Yisi Wang, Junying Zhang, Xinxin Lv, Ya Ding, Yaolong Wang, Yuanhua Liu, Chunyong Wu, Gongjun Yang
{"title":"基于 AuNPs@pDA@NiCo2S4@MoS2 纳米复合材料的检测白细胞介素-6 的高灵敏度和高选择性无标记阻抗免疫传感器","authors":"Yisi Wang, Junying Zhang, Xinxin Lv, Ya Ding, Yaolong Wang, Yuanhua Liu, Chunyong Wu, Gongjun Yang","doi":"10.1007/s00604-024-06779-2","DOIUrl":null,"url":null,"abstract":"<div><p>A highly sensitive and selective label-free impedimetric immunosensor based on AuNPs@pDA@NiCo<sub>2</sub>S<sub>4</sub>@MoS<sub>2</sub> nanocomposite modified on the surface of a screen-printed electrode (SPE) was designed for the detection of interleukin-6 (IL-6). The distribution of NiCo<sub>2</sub>S<sub>4</sub> nanoparticles on MoS<sub>2</sub> nanosheets was able to prevent them from agglomerating. The polydopamine (pDA) layer was coated on the surface of NiCo<sub>2</sub>S<sub>4</sub>@MoS<sub>2</sub> nanosheets by self-polymerization, which improved the stability and biocompatibility of the nanomaterial. The excellent reduction ability of pDA promoted the synthesis of gold nanoparticles (AuNPs), which increased the amount of antibody adsorption and the conductivity of the material. Finally, the antibody (Ab) of IL-6 was immobilized on the surface of AuNPs@pDA@NiCo<sub>2</sub>S<sub>4</sub>@MoS<sub>2</sub> nanocomposite. Electrochemical impedance spectroscopy (EIS) was used to detect the change of impedance before and after the immune response between Ab and IL-6 antigen (IL-6). Under the optimal experimental conditions, the relative change in impedance and the logarithmic concentration of IL-6 showed a good linear relationship in the range 1.00 to 1.00 × 10<sup>6</sup> pg/mL, with a low detection limit of 0.97 pg/mL. In addition, the proposed immunosensor performed with good reproducibility, stability, and specificity. It was successfully applied to the determination of IL-6 in patient’s serum samples of head and neck carcinoma with recoveries of 98.40% to 106.5%. To sum up, the proposed label-free impedimetric immunosensor was successfully constructed for IL-6 detection in real samples.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"191 12","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A highly sensitive and selective label-free impedimetric immunosensor for the detection of interleukin-6 based on AuNPs@pDA@NiCo2S4@MoS2 nanocomposite\",\"authors\":\"Yisi Wang, Junying Zhang, Xinxin Lv, Ya Ding, Yaolong Wang, Yuanhua Liu, Chunyong Wu, Gongjun Yang\",\"doi\":\"10.1007/s00604-024-06779-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A highly sensitive and selective label-free impedimetric immunosensor based on AuNPs@pDA@NiCo<sub>2</sub>S<sub>4</sub>@MoS<sub>2</sub> nanocomposite modified on the surface of a screen-printed electrode (SPE) was designed for the detection of interleukin-6 (IL-6). The distribution of NiCo<sub>2</sub>S<sub>4</sub> nanoparticles on MoS<sub>2</sub> nanosheets was able to prevent them from agglomerating. The polydopamine (pDA) layer was coated on the surface of NiCo<sub>2</sub>S<sub>4</sub>@MoS<sub>2</sub> nanosheets by self-polymerization, which improved the stability and biocompatibility of the nanomaterial. The excellent reduction ability of pDA promoted the synthesis of gold nanoparticles (AuNPs), which increased the amount of antibody adsorption and the conductivity of the material. Finally, the antibody (Ab) of IL-6 was immobilized on the surface of AuNPs@pDA@NiCo<sub>2</sub>S<sub>4</sub>@MoS<sub>2</sub> nanocomposite. Electrochemical impedance spectroscopy (EIS) was used to detect the change of impedance before and after the immune response between Ab and IL-6 antigen (IL-6). Under the optimal experimental conditions, the relative change in impedance and the logarithmic concentration of IL-6 showed a good linear relationship in the range 1.00 to 1.00 × 10<sup>6</sup> pg/mL, with a low detection limit of 0.97 pg/mL. In addition, the proposed immunosensor performed with good reproducibility, stability, and specificity. It was successfully applied to the determination of IL-6 in patient’s serum samples of head and neck carcinoma with recoveries of 98.40% to 106.5%. To sum up, the proposed label-free impedimetric immunosensor was successfully constructed for IL-6 detection in real samples.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"191 12\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-024-06779-2\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06779-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A highly sensitive and selective label-free impedimetric immunosensor for the detection of interleukin-6 based on AuNPs@pDA@NiCo2S4@MoS2 nanocomposite
A highly sensitive and selective label-free impedimetric immunosensor based on AuNPs@pDA@NiCo2S4@MoS2 nanocomposite modified on the surface of a screen-printed electrode (SPE) was designed for the detection of interleukin-6 (IL-6). The distribution of NiCo2S4 nanoparticles on MoS2 nanosheets was able to prevent them from agglomerating. The polydopamine (pDA) layer was coated on the surface of NiCo2S4@MoS2 nanosheets by self-polymerization, which improved the stability and biocompatibility of the nanomaterial. The excellent reduction ability of pDA promoted the synthesis of gold nanoparticles (AuNPs), which increased the amount of antibody adsorption and the conductivity of the material. Finally, the antibody (Ab) of IL-6 was immobilized on the surface of AuNPs@pDA@NiCo2S4@MoS2 nanocomposite. Electrochemical impedance spectroscopy (EIS) was used to detect the change of impedance before and after the immune response between Ab and IL-6 antigen (IL-6). Under the optimal experimental conditions, the relative change in impedance and the logarithmic concentration of IL-6 showed a good linear relationship in the range 1.00 to 1.00 × 106 pg/mL, with a low detection limit of 0.97 pg/mL. In addition, the proposed immunosensor performed with good reproducibility, stability, and specificity. It was successfully applied to the determination of IL-6 in patient’s serum samples of head and neck carcinoma with recoveries of 98.40% to 106.5%. To sum up, the proposed label-free impedimetric immunosensor was successfully constructed for IL-6 detection in real samples.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.