具有泛化和对抗鲁棒性的局部对比学习机统计物理学分析

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Mingshan Xie, Yuchen Wang, Haiping Huang
{"title":"具有泛化和对抗鲁棒性的局部对比学习机统计物理学分析","authors":"Mingshan Xie,&nbsp;Yuchen Wang,&nbsp;Haiping Huang","doi":"10.1007/s11433-024-2504-8","DOIUrl":null,"url":null,"abstract":"<div><p>Distinct from human cognitive processing, deep neural networks trained by backpropagation can be easily fooled by adversarial examples. To design a semantically meaningful representation learning, we discard backpropagation, and instead, propose a local contrastive learning, where the representations for the inputs bearing the same label shrink (akin to boson) in hidden layers, while those of different labels repel (akin to fermion). This layer-wise learning is local in nature, being biologically plausible. A statistical mechanics analysis shows that the target fermion-pair-distance is a key parameter. Moreover, the application of this local contrastive learning to MNIST benchmark dataset demonstrates that the adversarial vulnerability of standard perceptron can be greatly mitigated by tuning the target distance, i.e., controlling the geometric separation of prototype manifolds.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local-contrastive-learning machine with both generalization and adversarial robustness: A statistical physics analysis\",\"authors\":\"Mingshan Xie,&nbsp;Yuchen Wang,&nbsp;Haiping Huang\",\"doi\":\"10.1007/s11433-024-2504-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Distinct from human cognitive processing, deep neural networks trained by backpropagation can be easily fooled by adversarial examples. To design a semantically meaningful representation learning, we discard backpropagation, and instead, propose a local contrastive learning, where the representations for the inputs bearing the same label shrink (akin to boson) in hidden layers, while those of different labels repel (akin to fermion). This layer-wise learning is local in nature, being biologically plausible. A statistical mechanics analysis shows that the target fermion-pair-distance is a key parameter. Moreover, the application of this local contrastive learning to MNIST benchmark dataset demonstrates that the adversarial vulnerability of standard perceptron can be greatly mitigated by tuning the target distance, i.e., controlling the geometric separation of prototype manifolds.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-024-2504-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2504-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与人类的认知处理不同,通过反向传播训练的深度神经网络很容易被对抗性示例所欺骗。为了设计一种有语义意义的表征学习,我们摒弃了反向传播,转而提出了一种局部对比学习,即相同标签的输入表征在隐藏层中收缩(类似玻色子),而不同标签的输入表征则排斥(类似费米子)。这种分层学习是局部性的,在生物学上是可信的。统计力学分析表明,目标费米子对距离是一个关键参数。此外,这种局部对比学习在 MNIST 基准数据集上的应用表明,通过调整目标距离,即控制原型流形的几何分离,可以大大减轻标准感知器的对抗脆弱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local-contrastive-learning machine with both generalization and adversarial robustness: A statistical physics analysis

Distinct from human cognitive processing, deep neural networks trained by backpropagation can be easily fooled by adversarial examples. To design a semantically meaningful representation learning, we discard backpropagation, and instead, propose a local contrastive learning, where the representations for the inputs bearing the same label shrink (akin to boson) in hidden layers, while those of different labels repel (akin to fermion). This layer-wise learning is local in nature, being biologically plausible. A statistical mechanics analysis shows that the target fermion-pair-distance is a key parameter. Moreover, the application of this local contrastive learning to MNIST benchmark dataset demonstrates that the adversarial vulnerability of standard perceptron can be greatly mitigated by tuning the target distance, i.e., controlling the geometric separation of prototype manifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信