{"title":"FreePrune:基于免训练评估的跨粒度自动剪枝框架","authors":"Miao Tang;Ning Liu;Tao Yang;Haining Fang;Qiu Lin;Yujuan Tan;Xianzhang Chen;Duo Liu;Kan Zhong;Ao Ren","doi":"10.1109/TCAD.2024.3443694","DOIUrl":null,"url":null,"abstract":"Network pruning is an effective technique that reduces the computational costs of networks while maintaining accuracy. However, pruning requires expert knowledge and hyperparameter tuning, such as determining the pruning rate for each layer. Automatic pruning methods address this challenge by proposing an effective training-free metric to quickly evaluate the pruned network without fine-tuning. However, most existing automatic pruning methods only investigate a certain pruning granularity, and it remains unclear whether metrics benefit automatic pruning at different granularities. Neural architecture search also studies training-free metrics to accelerate network generation. Nevertheless, whether they apply to pruning needs further investigation. In this study, we first systematically analyze various advanced training-free metrics for various granularities in pruning, and then we investigate the correlation between the training-free metric score and the after-fine-tuned model accuracy. Based on the analysis, we proposed FreePrune score, a more general metric compatible with all pruning granularities. Aiming at generating high-quality pruned networks and unleashing the power of FreePrune score, we further propose FreePrune, an automatic framework that can rapidly generate and evaluate the candidate networks, leading to a final pruned network with both high accuracy and pruning rate. Experiments show that our method achieves high correlation on various pruning granularities and comprehensively improves the accuracy.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"43 11","pages":"4033-4044"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FreePrune: An Automatic Pruning Framework Across Various Granularities Based on Training-Free Evaluation\",\"authors\":\"Miao Tang;Ning Liu;Tao Yang;Haining Fang;Qiu Lin;Yujuan Tan;Xianzhang Chen;Duo Liu;Kan Zhong;Ao Ren\",\"doi\":\"10.1109/TCAD.2024.3443694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network pruning is an effective technique that reduces the computational costs of networks while maintaining accuracy. However, pruning requires expert knowledge and hyperparameter tuning, such as determining the pruning rate for each layer. Automatic pruning methods address this challenge by proposing an effective training-free metric to quickly evaluate the pruned network without fine-tuning. However, most existing automatic pruning methods only investigate a certain pruning granularity, and it remains unclear whether metrics benefit automatic pruning at different granularities. Neural architecture search also studies training-free metrics to accelerate network generation. Nevertheless, whether they apply to pruning needs further investigation. In this study, we first systematically analyze various advanced training-free metrics for various granularities in pruning, and then we investigate the correlation between the training-free metric score and the after-fine-tuned model accuracy. Based on the analysis, we proposed FreePrune score, a more general metric compatible with all pruning granularities. Aiming at generating high-quality pruned networks and unleashing the power of FreePrune score, we further propose FreePrune, an automatic framework that can rapidly generate and evaluate the candidate networks, leading to a final pruned network with both high accuracy and pruning rate. Experiments show that our method achieves high correlation on various pruning granularities and comprehensively improves the accuracy.\",\"PeriodicalId\":13251,\"journal\":{\"name\":\"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems\",\"volume\":\"43 11\",\"pages\":\"4033-4044\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10745854/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745854/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
FreePrune: An Automatic Pruning Framework Across Various Granularities Based on Training-Free Evaluation
Network pruning is an effective technique that reduces the computational costs of networks while maintaining accuracy. However, pruning requires expert knowledge and hyperparameter tuning, such as determining the pruning rate for each layer. Automatic pruning methods address this challenge by proposing an effective training-free metric to quickly evaluate the pruned network without fine-tuning. However, most existing automatic pruning methods only investigate a certain pruning granularity, and it remains unclear whether metrics benefit automatic pruning at different granularities. Neural architecture search also studies training-free metrics to accelerate network generation. Nevertheless, whether they apply to pruning needs further investigation. In this study, we first systematically analyze various advanced training-free metrics for various granularities in pruning, and then we investigate the correlation between the training-free metric score and the after-fine-tuned model accuracy. Based on the analysis, we proposed FreePrune score, a more general metric compatible with all pruning granularities. Aiming at generating high-quality pruned networks and unleashing the power of FreePrune score, we further propose FreePrune, an automatic framework that can rapidly generate and evaluate the candidate networks, leading to a final pruned network with both high accuracy and pruning rate. Experiments show that our method achieves high correlation on various pruning granularities and comprehensively improves the accuracy.
期刊介绍:
The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.