𝑆𝑈(3)𝐹极限中粲重子衰变的拓扑振幅

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Di Wang, Jin-Feng Luo
{"title":"𝑆𝑈(3)𝐹极限中粲重子衰变的拓扑振幅","authors":"Di Wang, Jin-Feng Luo","doi":"10.1103/physrevd.110.093001","DOIUrl":null,"url":null,"abstract":"Charmed baryon decay plays an important role in studying the weak and strong interactions. Topological diagram is an intuitive tool for analyzing the dynamics of heavy hadron decays. In this work, we investigate the topological diagrams of charmed baryon antitriplet (<mjx-container ctxtmenu_counter=\"26\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(7 0 (6 1 5 (4 2 3)))\"><mjx-msub data-semantic-children=\"0,6\" data-semantic- data-semantic-owns=\"0 6\" data-semantic-role=\"latinletter\" data-semantic-speech=\"script upper B Subscript c ModifyingAbove 3 With bar\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.254em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,4\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"1 5 4\" data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mover data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.102em; padding-left: 0.247em; margin-bottom: -0.555em;\"><mjx-mo data-semantic-annotation=\"accent:bar\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\" style=\"width: 0px; margin-left: -0.175em;\"><mjx-c>¯</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn></mjx-base></mjx-mover></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container>) decays into a light baryon octet (<mjx-container ctxtmenu_counter=\"27\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"script upper B 8\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>) and a light meson (<mjx-container ctxtmenu_counter=\"28\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper M\" data-semantic-type=\"identifier\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-math></mjx-container>). A one-to-one mapping between the topological diagram and the invariant tensor is established. The topological diagrams of the <mjx-container ctxtmenu_counter=\"29\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"7,16\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"7 8 16\" data-semantic-role=\"arrow\" data-semantic-speech=\"script upper B Subscript c ModifyingAbove 3 With bar Baseline right arrow script upper B 8 Superscript upper S Baseline upper M\" data-semantic-structure=\"(17 (7 0 (6 1 5 (4 2 3))) 8 (16 (13 (12 9 10) 11) 15 14))\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,6\" data-semantic- data-semantic-owns=\"0 6\" data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.254em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,4\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"1 5 4\" data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mover data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.102em; padding-left: 0.247em; margin-bottom: -0.555em;\"><mjx-mo data-semantic-annotation=\"accent:bar\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\" style=\"width: 0px; margin-left: -0.175em;\"><mjx-c>¯</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn></mjx-base></mjx-mover></mjx-mrow></mjx-script></mjx-msub><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,→\" data-semantic-parent=\"17\" data-semantic-role=\"arrow\" data-semantic-type=\"relation\"><mjx-c>→</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"13,14\" data-semantic-content=\"15\" data-semantic- data-semantic-owns=\"13 15 14\" data-semantic-parent=\"17\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"4\"><mjx-msubsup data-semantic-children=\"9,10,11\" data-semantic-collapsed=\"(13 (12 9 10) 11)\" data-semantic- data-semantic-owns=\"9 10 11\" data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.278em; margin-left: 0px;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-spacer style=\"margin-top: 0.204em;\"></mjx-spacer><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msubsup><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"16\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> modes (where <mjx-container ctxtmenu_counter=\"30\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(4 (3 0 1) 2)\"><mjx-msubsup data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"latinletter\" data-semantic-speech=\"script upper B 8 Superscript upper S\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.278em; margin-left: 0px;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-spacer style=\"margin-top: 0.204em;\"></mjx-spacer><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msubsup></mjx-math></mjx-container> and <mjx-container ctxtmenu_counter=\"31\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(4 (3 0 1) 2)\"><mjx-msubsup data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"latinletter\" data-semantic-speech=\"script upper B 8 Superscript upper A\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.278em; margin-left: 0px;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐴</mjx-c></mjx-mi><mjx-spacer style=\"margin-top: 0.204em;\"></mjx-spacer><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msubsup></mjx-math></mjx-container> are the <mjx-container ctxtmenu_counter=\"32\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-role=\"arrow\" data-semantic-speech=\"q 1 left right arrow q 2\" data-semantic-structure=\"(7 (2 0 1) 3 (6 4 5))\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑞</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>1</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,↔\" data-semantic-parent=\"7\" data-semantic-role=\"arrow\" data-semantic-type=\"relation\"><mjx-c>↔</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"4\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑞</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> symmetric and antisymmetric octets) and the diagrams with a quark loop are presented for the first time. The completeness of topologies is confirmed by permutation. The linear relations of topologies are obtained by deriving the relation between the topological amplitudes constructed by the third- and second-rank octet tensors. It is found the topologies contributing to the <mjx-container ctxtmenu_counter=\"33\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"7,16\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"7 8 16\" data-semantic-role=\"arrow\" data-semantic-speech=\"script upper B Subscript c ModifyingAbove 3 With bar Baseline right arrow script upper B 8 Superscript upper S Baseline upper M\" data-semantic-structure=\"(17 (7 0 (6 1 5 (4 2 3))) 8 (16 (13 (12 9 10) 11) 15 14))\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,6\" data-semantic- data-semantic-owns=\"0 6\" data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.254em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,4\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"1 5 4\" data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mover data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.102em; padding-left: 0.247em; margin-bottom: -0.555em;\"><mjx-mo data-semantic-annotation=\"accent:bar\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\" style=\"width: 0px; margin-left: -0.175em;\"><mjx-c>¯</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn></mjx-base></mjx-mover></mjx-mrow></mjx-script></mjx-msub><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,→\" data-semantic-parent=\"17\" data-semantic-role=\"arrow\" data-semantic-type=\"relation\"><mjx-c>→</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"13,14\" data-semantic-content=\"15\" data-semantic- data-semantic-owns=\"13 15 14\" data-semantic-parent=\"17\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"4\"><mjx-msubsup data-semantic-children=\"9,10,11\" data-semantic-collapsed=\"(13 (12 9 10) 11)\" data-semantic- data-semantic-owns=\"9 10 11\" data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.278em; margin-left: 0px;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-spacer style=\"margin-top: 0.204em;\"></mjx-spacer><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msubsup><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"16\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> modes can be determined by the topologies contributing to the <mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"7,16\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"7 8 16\" data-semantic-role=\"arrow\" data-semantic-speech=\"script upper B Subscript c ModifyingAbove 3 With bar Baseline right arrow script upper B 8 Superscript upper A Baseline upper M\" data-semantic-structure=\"(17 (7 0 (6 1 5 (4 2 3))) 8 (16 (13 (12 9 10) 11) 15 14))\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,6\" data-semantic- data-semantic-owns=\"0 6\" data-semantic-parent=\"17\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.254em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,4\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"1 5 4\" data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mover data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.102em; padding-left: 0.247em; margin-bottom: -0.555em;\"><mjx-mo data-semantic-annotation=\"accent:bar\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\" style=\"width: 0px; margin-left: -0.175em;\"><mjx-c>¯</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn></mjx-base></mjx-mover></mjx-mrow></mjx-script></mjx-msub><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,→\" data-semantic-parent=\"17\" data-semantic-role=\"arrow\" data-semantic-type=\"relation\"><mjx-c>→</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"13,14\" data-semantic-content=\"15\" data-semantic- data-semantic-owns=\"13 15 14\" data-semantic-parent=\"17\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"4\"><mjx-msubsup data-semantic-children=\"9,10,11\" data-semantic-collapsed=\"(13 (12 9 10) 11)\" data-semantic- data-semantic-owns=\"9 10 11\" data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.278em; margin-left: 0px;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐴</mjx-c></mjx-mi><mjx-spacer style=\"margin-top: 0.204em;\"></mjx-spacer><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msubsup><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"16\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> modes, and vice versa. The equations of <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,7\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"0 8 7\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper S upper U left parenthesis 3 right parenthesis\" data-semantic-structure=\"(9 0 8 (7 1 6 (5 2 3 4)))\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"1,5\" data-semantic-content=\"6,1\" data-semantic- data-semantic-owns=\"1 6 5\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"3\" data-semantic-content=\"2,4\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"7\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> irreducible amplitudes decomposed by topologies are derived through two different intermediate amplitudes. However, the inverse solution does not exist since the number of topologies exceeds number of <mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,7\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"0 8 7\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper S upper U left parenthesis 3 right parenthesis\" data-semantic-structure=\"(9 0 8 (7 1 6 (5 2 3 4)))\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"1,5\" data-semantic-content=\"6,1\" data-semantic- data-semantic-owns=\"1 6 5\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"3\" data-semantic-content=\"2,4\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"7\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> irreducible amplitudes. Applying this framework to the Standard Model, it is found there are thirteen independent <mjx-container ctxtmenu_counter=\"37\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,7\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"0 8 7\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper S upper U left parenthesis 3 right parenthesis\" data-semantic-structure=\"(9 0 8 (7 1 6 (5 2 3 4)))\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"1,5\" data-semantic-content=\"6,1\" data-semantic- data-semantic-owns=\"1 6 5\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"3\" data-semantic-content=\"2,4\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"7\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> irreducible amplitudes contributing to the <mjx-container ctxtmenu_counter=\"38\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"7,14\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"7 8 14\" data-semantic-role=\"arrow\" data-semantic-speech=\"script upper B Subscript c ModifyingAbove 3 With bar Baseline right arrow script upper B 8 upper M\" data-semantic-structure=\"(15 (7 0 (6 1 5 (4 2 3))) 8 (14 (11 9 10) 13 12))\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,6\" data-semantic- data-semantic-owns=\"0 6\" data-semantic-parent=\"15\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.254em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,4\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"1 5 4\" data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mover data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.102em; padding-left: 0.247em; margin-bottom: -0.555em;\"><mjx-mo data-semantic-annotation=\"accent:bar\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\" style=\"width: 0px; margin-left: -0.175em;\"><mjx-c>¯</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn></mjx-base></mjx-mover></mjx-mrow></mjx-script></mjx-msub><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,→\" data-semantic-parent=\"15\" data-semantic-role=\"arrow\" data-semantic-type=\"relation\"><mjx-c>→</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"11,12\" data-semantic-content=\"13\" data-semantic- data-semantic-owns=\"11 13 12\" data-semantic-parent=\"15\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"4\"><mjx-msub data-semantic-children=\"9,10\" data-semantic- data-semantic-owns=\"9 10\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> decays. Among these, four amplitudes associated with three-dimensional operators are significant for <mjx-container ctxtmenu_counter=\"39\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"0 2 1\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper C upper P\" data-semantic-structure=\"(3 0 2 1)\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐶</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑃</mjx-c></mjx-mi></mjx-math></mjx-container> asymmetries. Considering the suppressions due to small Cabibbo-Kobayashi-Maskawa matrix elements and the Körner-Pati-Woo theorem, the branching fractions of charmed baryon decays are dominated by five <mjx-container ctxtmenu_counter=\"40\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,7\" data-semantic-content=\"8\" data-semantic- data-semantic-owns=\"0 8 7\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper S upper U left parenthesis 3 right parenthesis\" data-semantic-structure=\"(9 0 8 (7 1 6 (5 2 3 4)))\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"1,5\" data-semantic-content=\"6,1\" data-semantic- data-semantic-owns=\"1 6 5\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"3\" data-semantic-content=\"2,4\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"7\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> irreducible amplitudes in the <mjx-container ctxtmenu_counter=\"41\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,1,6\" data-semantic-content=\"8,9\" data-semantic- data-semantic-owns=\"0 8 1 9 6\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper S upper U left parenthesis 3 right parenthesis Subscript upper F\" data-semantic-structure=\"(10 0 8 1 9 (6 (7 2 3 4) 5))\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"7,5\" data-semantic-fencepointer=\"4\" data-semantic- data-semantic-owns=\"7 5\" data-semantic-parent=\"10\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"3\" data-semantic-content=\"2,4\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐹</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> limit. Quark-loop diagrams could enhance the <mjx-container ctxtmenu_counter=\"42\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper U\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi></mjx-math></mjx-container>-spin breaking effects and increase the branching fraction difference of two decay channels. Systematic measurements of branching fractions of the singly Cabibbo-suppressed modes could help identify promising channels for searching for <mjx-container ctxtmenu_counter=\"43\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"0 2 1\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper C upper P\" data-semantic-structure=\"(3 0 2 1)\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐶</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑃</mjx-c></mjx-mi></mjx-math></mjx-container> asymmetries in the charmed baryon sector.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"54 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological amplitudes of charmed baryon decays in the𝑆⁢𝑈⁢(3)𝐹limit\",\"authors\":\"Di Wang, Jin-Feng Luo\",\"doi\":\"10.1103/physrevd.110.093001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Charmed baryon decay plays an important role in studying the weak and strong interactions. Topological diagram is an intuitive tool for analyzing the dynamics of heavy hadron decays. In this work, we investigate the topological diagrams of charmed baryon antitriplet (<mjx-container ctxtmenu_counter=\\\"26\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(7 0 (6 1 5 (4 2 3)))\\\"><mjx-msub data-semantic-children=\\\"0,6\\\" data-semantic- data-semantic-owns=\\\"0 6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"script upper B Subscript c ModifyingAbove 3 With bar\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.254em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"1,4\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-owns=\\\"1 5 4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" size=\\\"s\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑐</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mover data-semantic-children=\\\"2,3\\\" data-semantic- data-semantic-owns=\\\"2 3\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.102em; padding-left: 0.247em; margin-bottom: -0.555em;\\\"><mjx-mo data-semantic-annotation=\\\"accent:bar\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0px; margin-left: -0.175em;\\\"><mjx-c>¯</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-base></mjx-mover></mjx-mrow></mjx-script></mjx-msub></mjx-math></mjx-container>) decays into a light baryon octet (<mjx-container ctxtmenu_counter=\\\"27\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"script upper B 8\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>) and a light meson (<mjx-container ctxtmenu_counter=\\\"28\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper M\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-math></mjx-container>). A one-to-one mapping between the topological diagram and the invariant tensor is established. The topological diagrams of the <mjx-container ctxtmenu_counter=\\\"29\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"7,16\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-owns=\\\"7 8 16\\\" data-semantic-role=\\\"arrow\\\" data-semantic-speech=\\\"script upper B Subscript c ModifyingAbove 3 With bar Baseline right arrow script upper B 8 Superscript upper S Baseline upper M\\\" data-semantic-structure=\\\"(17 (7 0 (6 1 5 (4 2 3))) 8 (16 (13 (12 9 10) 11) 15 14))\\\" data-semantic-type=\\\"relseq\\\"><mjx-msub data-semantic-children=\\\"0,6\\\" data-semantic- data-semantic-owns=\\\"0 6\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.254em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"1,4\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-owns=\\\"1 5 4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" size=\\\"s\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑐</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mover data-semantic-children=\\\"2,3\\\" data-semantic- data-semantic-owns=\\\"2 3\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.102em; padding-left: 0.247em; margin-bottom: -0.555em;\\\"><mjx-mo data-semantic-annotation=\\\"accent:bar\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0px; margin-left: -0.175em;\\\"><mjx-c>¯</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-base></mjx-mover></mjx-mrow></mjx-script></mjx-msub><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,→\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"arrow\\\" data-semantic-type=\\\"relation\\\"><mjx-c>→</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"13,14\\\" data-semantic-content=\\\"15\\\" data-semantic- data-semantic-owns=\\\"13 15 14\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-msubsup data-semantic-children=\\\"9,10,11\\\" data-semantic-collapsed=\\\"(13 (12 9 10) 11)\\\" data-semantic- data-semantic-owns=\\\"9 10 11\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subsup\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.278em; margin-left: 0px;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-spacer style=\\\"margin-top: 0.204em;\\\"></mjx-spacer><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msubsup><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> modes (where <mjx-container ctxtmenu_counter=\\\"30\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(4 (3 0 1) 2)\\\"><mjx-msubsup data-semantic-children=\\\"0,1,2\\\" data-semantic-collapsed=\\\"(4 (3 0 1) 2)\\\" data-semantic- data-semantic-owns=\\\"0 1 2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"script upper B 8 Superscript upper S\\\" data-semantic-type=\\\"subsup\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.278em; margin-left: 0px;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-spacer style=\\\"margin-top: 0.204em;\\\"></mjx-spacer><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msubsup></mjx-math></mjx-container> and <mjx-container ctxtmenu_counter=\\\"31\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(4 (3 0 1) 2)\\\"><mjx-msubsup data-semantic-children=\\\"0,1,2\\\" data-semantic-collapsed=\\\"(4 (3 0 1) 2)\\\" data-semantic- data-semantic-owns=\\\"0 1 2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"script upper B 8 Superscript upper A\\\" data-semantic-type=\\\"subsup\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.278em; margin-left: 0px;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝐴</mjx-c></mjx-mi><mjx-spacer style=\\\"margin-top: 0.204em;\\\"></mjx-spacer><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msubsup></mjx-math></mjx-container> are the <mjx-container ctxtmenu_counter=\\\"32\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"2,6\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-owns=\\\"2 3 6\\\" data-semantic-role=\\\"arrow\\\" data-semantic-speech=\\\"q 1 left right arrow q 2\\\" data-semantic-structure=\\\"(7 (2 0 1) 3 (6 4 5))\\\" data-semantic-type=\\\"relseq\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑞</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>1</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,↔\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"arrow\\\" data-semantic-type=\\\"relation\\\"><mjx-c>↔</mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"4,5\\\" data-semantic- data-semantic-owns=\\\"4 5\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\" space=\\\"4\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑞</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> symmetric and antisymmetric octets) and the diagrams with a quark loop are presented for the first time. The completeness of topologies is confirmed by permutation. The linear relations of topologies are obtained by deriving the relation between the topological amplitudes constructed by the third- and second-rank octet tensors. It is found the topologies contributing to the <mjx-container ctxtmenu_counter=\\\"33\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"7,16\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-owns=\\\"7 8 16\\\" data-semantic-role=\\\"arrow\\\" data-semantic-speech=\\\"script upper B Subscript c ModifyingAbove 3 With bar Baseline right arrow script upper B 8 Superscript upper S Baseline upper M\\\" data-semantic-structure=\\\"(17 (7 0 (6 1 5 (4 2 3))) 8 (16 (13 (12 9 10) 11) 15 14))\\\" data-semantic-type=\\\"relseq\\\"><mjx-msub data-semantic-children=\\\"0,6\\\" data-semantic- data-semantic-owns=\\\"0 6\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.254em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"1,4\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-owns=\\\"1 5 4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" size=\\\"s\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑐</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mover data-semantic-children=\\\"2,3\\\" data-semantic- data-semantic-owns=\\\"2 3\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.102em; padding-left: 0.247em; margin-bottom: -0.555em;\\\"><mjx-mo data-semantic-annotation=\\\"accent:bar\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0px; margin-left: -0.175em;\\\"><mjx-c>¯</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-base></mjx-mover></mjx-mrow></mjx-script></mjx-msub><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,→\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"arrow\\\" data-semantic-type=\\\"relation\\\"><mjx-c>→</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"13,14\\\" data-semantic-content=\\\"15\\\" data-semantic- data-semantic-owns=\\\"13 15 14\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-msubsup data-semantic-children=\\\"9,10,11\\\" data-semantic-collapsed=\\\"(13 (12 9 10) 11)\\\" data-semantic- data-semantic-owns=\\\"9 10 11\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subsup\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.278em; margin-left: 0px;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-spacer style=\\\"margin-top: 0.204em;\\\"></mjx-spacer><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msubsup><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> modes can be determined by the topologies contributing to the <mjx-container ctxtmenu_counter=\\\"34\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"7,16\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-owns=\\\"7 8 16\\\" data-semantic-role=\\\"arrow\\\" data-semantic-speech=\\\"script upper B Subscript c ModifyingAbove 3 With bar Baseline right arrow script upper B 8 Superscript upper A Baseline upper M\\\" data-semantic-structure=\\\"(17 (7 0 (6 1 5 (4 2 3))) 8 (16 (13 (12 9 10) 11) 15 14))\\\" data-semantic-type=\\\"relseq\\\"><mjx-msub data-semantic-children=\\\"0,6\\\" data-semantic- data-semantic-owns=\\\"0 6\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.254em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"1,4\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-owns=\\\"1 5 4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" size=\\\"s\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑐</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mover data-semantic-children=\\\"2,3\\\" data-semantic- data-semantic-owns=\\\"2 3\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.102em; padding-left: 0.247em; margin-bottom: -0.555em;\\\"><mjx-mo data-semantic-annotation=\\\"accent:bar\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0px; margin-left: -0.175em;\\\"><mjx-c>¯</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-base></mjx-mover></mjx-mrow></mjx-script></mjx-msub><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,→\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"arrow\\\" data-semantic-type=\\\"relation\\\"><mjx-c>→</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"13,14\\\" data-semantic-content=\\\"15\\\" data-semantic- data-semantic-owns=\\\"13 15 14\\\" data-semantic-parent=\\\"17\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-msubsup data-semantic-children=\\\"9,10,11\\\" data-semantic-collapsed=\\\"(13 (12 9 10) 11)\\\" data-semantic- data-semantic-owns=\\\"9 10 11\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subsup\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.278em; margin-left: 0px;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝐴</mjx-c></mjx-mi><mjx-spacer style=\\\"margin-top: 0.204em;\\\"></mjx-spacer><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msubsup><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"16\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> modes, and vice versa. The equations of <mjx-container ctxtmenu_counter=\\\"35\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-owns=\\\"0 8 7\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper S upper U left parenthesis 3 right parenthesis\\\" data-semantic-structure=\\\"(9 0 8 (7 1 6 (5 2 3 4)))\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"1,5\\\" data-semantic-content=\\\"6,1\\\" data-semantic- data-semantic-owns=\\\"1 6 5\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2,4\\\" data-semantic- data-semantic-owns=\\\"2 3 4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> irreducible amplitudes decomposed by topologies are derived through two different intermediate amplitudes. However, the inverse solution does not exist since the number of topologies exceeds number of <mjx-container ctxtmenu_counter=\\\"36\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-owns=\\\"0 8 7\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper S upper U left parenthesis 3 right parenthesis\\\" data-semantic-structure=\\\"(9 0 8 (7 1 6 (5 2 3 4)))\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"1,5\\\" data-semantic-content=\\\"6,1\\\" data-semantic- data-semantic-owns=\\\"1 6 5\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2,4\\\" data-semantic- data-semantic-owns=\\\"2 3 4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> irreducible amplitudes. Applying this framework to the Standard Model, it is found there are thirteen independent <mjx-container ctxtmenu_counter=\\\"37\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-owns=\\\"0 8 7\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper S upper U left parenthesis 3 right parenthesis\\\" data-semantic-structure=\\\"(9 0 8 (7 1 6 (5 2 3 4)))\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"1,5\\\" data-semantic-content=\\\"6,1\\\" data-semantic- data-semantic-owns=\\\"1 6 5\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2,4\\\" data-semantic- data-semantic-owns=\\\"2 3 4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> irreducible amplitudes contributing to the <mjx-container ctxtmenu_counter=\\\"38\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math breakable=\\\"true\\\" data-semantic-children=\\\"7,14\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-owns=\\\"7 8 14\\\" data-semantic-role=\\\"arrow\\\" data-semantic-speech=\\\"script upper B Subscript c ModifyingAbove 3 With bar Baseline right arrow script upper B 8 upper M\\\" data-semantic-structure=\\\"(15 (7 0 (6 1 5 (4 2 3))) 8 (14 (11 9 10) 13 12))\\\" data-semantic-type=\\\"relseq\\\"><mjx-msub data-semantic-children=\\\"0,6\\\" data-semantic- data-semantic-owns=\\\"0 6\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.254em;\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"1,4\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-owns=\\\"1 5 4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" size=\\\"s\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑐</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mover data-semantic-children=\\\"2,3\\\" data-semantic- data-semantic-owns=\\\"2 3\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.102em; padding-left: 0.247em; margin-bottom: -0.555em;\\\"><mjx-mo data-semantic-annotation=\\\"accent:bar\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"operator\\\" style=\\\"width: 0px; margin-left: -0.175em;\\\"><mjx-c>¯</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-base></mjx-mover></mjx-mrow></mjx-script></mjx-msub><mjx-break size=\\\"4\\\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,→\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"arrow\\\" data-semantic-type=\\\"relation\\\"><mjx-c>→</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"11,12\\\" data-semantic-content=\\\"13\\\" data-semantic- data-semantic-owns=\\\"11 13 12\\\" data-semantic-parent=\\\"15\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-msub data-semantic-children=\\\"9,10\\\" data-semantic- data-semantic-owns=\\\"9 10\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℬ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"11\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>8</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> decays. Among these, four amplitudes associated with three-dimensional operators are significant for <mjx-container ctxtmenu_counter=\\\"39\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-owns=\\\"0 2 1\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper C upper P\\\" data-semantic-structure=\\\"(3 0 2 1)\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐶</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑃</mjx-c></mjx-mi></mjx-math></mjx-container> asymmetries. Considering the suppressions due to small Cabibbo-Kobayashi-Maskawa matrix elements and the Körner-Pati-Woo theorem, the branching fractions of charmed baryon decays are dominated by five <mjx-container ctxtmenu_counter=\\\"40\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-owns=\\\"0 8 7\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper S upper U left parenthesis 3 right parenthesis\\\" data-semantic-structure=\\\"(9 0 8 (7 1 6 (5 2 3 4)))\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"1,5\\\" data-semantic-content=\\\"6,1\\\" data-semantic- data-semantic-owns=\\\"1 6 5\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2,4\\\" data-semantic- data-semantic-owns=\\\"2 3 4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> irreducible amplitudes in the <mjx-container ctxtmenu_counter=\\\"41\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,1,6\\\" data-semantic-content=\\\"8,9\\\" data-semantic- data-semantic-owns=\\\"0 8 1 9 6\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper S upper U left parenthesis 3 right parenthesis Subscript upper F\\\" data-semantic-structure=\\\"(10 0 8 1 9 (6 (7 2 3 4) 5))\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"7,5\\\" data-semantic-fencepointer=\\\"4\\\" data-semantic- data-semantic-owns=\\\"7 5\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2,4\\\" data-semantic- data-semantic-owns=\\\"2 3 4\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" size=\\\"s\\\"><mjx-c>𝐹</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> limit. Quark-loop diagrams could enhance the <mjx-container ctxtmenu_counter=\\\"42\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper U\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑈</mjx-c></mjx-mi></mjx-math></mjx-container>-spin breaking effects and increase the branching fraction difference of two decay channels. Systematic measurements of branching fractions of the singly Cabibbo-suppressed modes could help identify promising channels for searching for <mjx-container ctxtmenu_counter=\\\"43\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-owns=\\\"0 2 1\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper C upper P\\\" data-semantic-structure=\\\"(3 0 2 1)\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐶</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑃</mjx-c></mjx-mi></mjx-math></mjx-container> asymmetries in the charmed baryon sector.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.093001\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.093001","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

有魅力重子衰变在研究弱相互作用和强相互作用中发挥着重要作用。拓扑图是分析重强子衰变动力学的直观工具。在这项工作中,我们研究了粲重子反三重子(ℬ𝑐¯3)衰变为轻重子八重子(ℬ8)和轻介子(𝑀)的拓扑图。拓扑图和不变张量之间建立了一一对应的映射关系。首次提出了ℬ𝑐¯3→ℬ𝑆8𝑀模式(其中ℬ𝑆8和ℬ𝐴8是△1↔△2对称和反对称八面体)的拓扑图和带有夸克环的拓扑图。拓扑的完整性通过置换得到了证实。通过推导三阶和二阶八元张量构建的拓扑振幅之间的关系,得到了拓扑的线性关系。研究发现,ℬ𝑐¯3→ℬ𝑆8𝑀模式的拓扑结构可以由ℬ𝑐¯3→𝐴8𝑀模式的拓扑结构决定,反之亦然。𝑆𝑈(3)不可还原振幅的拓扑分解方程是通过两种不同的中间振幅推导出来的。然而,由于拓扑的数量超过了𝑆𝑈(3)不可还原振幅的数量,逆解并不存在。将这一框架应用于标准模型,可以发现有 13 个独立的𝑆𝑈(3)不可还原振幅对ℬ𝑐¯3→ℬ8𝑀衰变做出了贡献。其中,与三维算子相关的四个振幅对于𝐶𝑃不对称具有重要意义。考虑到小卡比布-小林-马斯卡瓦矩阵元素和柯尔纳-帕蒂-沃定理的抑制作用,在𝑆𝑈(3)𝐹极限,粲重子衰变的分支分数由五个𝑆𝑈(3)𝐹不可还原振幅主导。夸克环图可以增强𝑈-自旋破缺效应,增加两个衰变通道的分支分数差。对单卡比波抑制模式分支分数的系统测量,有助于确定在粲重子部门寻找𝐶𝑃不对称的有希望的通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological amplitudes of charmed baryon decays in the𝑆⁢𝑈⁢(3)𝐹limit
Charmed baryon decay plays an important role in studying the weak and strong interactions. Topological diagram is an intuitive tool for analyzing the dynamics of heavy hadron decays. In this work, we investigate the topological diagrams of charmed baryon antitriplet (𝑐¯3) decays into a light baryon octet (8) and a light meson (𝑀). A one-to-one mapping between the topological diagram and the invariant tensor is established. The topological diagrams of the 𝑐¯3𝑆8𝑀 modes (where 𝑆8 and 𝐴8 are the 𝑞1𝑞2 symmetric and antisymmetric octets) and the diagrams with a quark loop are presented for the first time. The completeness of topologies is confirmed by permutation. The linear relations of topologies are obtained by deriving the relation between the topological amplitudes constructed by the third- and second-rank octet tensors. It is found the topologies contributing to the 𝑐¯3𝑆8𝑀 modes can be determined by the topologies contributing to the 𝑐¯3𝐴8𝑀 modes, and vice versa. The equations of 𝑆𝑈(3) irreducible amplitudes decomposed by topologies are derived through two different intermediate amplitudes. However, the inverse solution does not exist since the number of topologies exceeds number of 𝑆𝑈(3) irreducible amplitudes. Applying this framework to the Standard Model, it is found there are thirteen independent 𝑆𝑈(3) irreducible amplitudes contributing to the 𝑐¯38𝑀 decays. Among these, four amplitudes associated with three-dimensional operators are significant for 𝐶𝑃 asymmetries. Considering the suppressions due to small Cabibbo-Kobayashi-Maskawa matrix elements and the Körner-Pati-Woo theorem, the branching fractions of charmed baryon decays are dominated by five 𝑆𝑈(3) irreducible amplitudes in the 𝑆𝑈(3)𝐹 limit. Quark-loop diagrams could enhance the 𝑈-spin breaking effects and increase the branching fraction difference of two decay channels. Systematic measurements of branching fractions of the singly Cabibbo-suppressed modes could help identify promising channels for searching for 𝐶𝑃 asymmetries in the charmed baryon sector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信