{"title":"了解变色龙式双功能催化剂中的活性位点,实现实用的锌-空气充电电池","authors":"Xiongwei Zhong, Xiao Xiao, Qizhen Li, Mengtian Zhang, Zhitong Li, Leyi Gao, Biao Chen, Zhiyang Zheng, Qingjin Fu, Xingzhu Wang, Guangmin Zhou, Baomin Xu","doi":"10.1038/s41467-024-54019-1","DOIUrl":null,"url":null,"abstract":"<p>The practical application of rechargeable zinc-air batteries faces challenges stemming from inadequate bifunctional catalysts, contradictory gas-liquid-solid three-phase interfaces, and an ambiguous fundamental understanding. Herein, we propose a chameleon-like bifunctional catalyst comprising ruthenium single-atoms grafted onto nickel-iron layer double hydroxide (Ru<sub>SA</sub>-NiFe LDH). The adaptive oxidation of Ru<sub>SA</sub>-NiFe LDH to oxyhydroxide species (Ru<sub>SA</sub>-NiFeOOH) during charging exposes active sites for the oxygen evolution reaction, while reversible reduction to NiFe LDH during discharge exposes active sites for the oxygen reduction reaction. Additionally, a hierarchical air cathode featuring hydrophilic and hydrophobic layers facilitates the reversible conversion between Ru<sub>SA</sub>-NiFe LDH and Ru<sub>SA</sub>-NiFeOOH, expedites oxygen bubble desorption, and suppresses carbon corrosion. Consequently, our zinc-air batteries demonstrate a high charge/discharge capacity of 100 mAh cm<sup>−2</sup> per cycle, a voltage gap of 0.67 V, and an extended cycle life of 2400 h at 10 mA cm<sup>−2</sup>. We comprehensively elucidate the catalytic reaction thermodynamics and kinetics for the air cathode through electrode potential decoupling monitoring, oxygen bubble desorption tracking, and carbon content quantification.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"28 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the active site in chameleon-like bifunctional catalyst for practical rechargeable zinc-air batteries\",\"authors\":\"Xiongwei Zhong, Xiao Xiao, Qizhen Li, Mengtian Zhang, Zhitong Li, Leyi Gao, Biao Chen, Zhiyang Zheng, Qingjin Fu, Xingzhu Wang, Guangmin Zhou, Baomin Xu\",\"doi\":\"10.1038/s41467-024-54019-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The practical application of rechargeable zinc-air batteries faces challenges stemming from inadequate bifunctional catalysts, contradictory gas-liquid-solid three-phase interfaces, and an ambiguous fundamental understanding. Herein, we propose a chameleon-like bifunctional catalyst comprising ruthenium single-atoms grafted onto nickel-iron layer double hydroxide (Ru<sub>SA</sub>-NiFe LDH). The adaptive oxidation of Ru<sub>SA</sub>-NiFe LDH to oxyhydroxide species (Ru<sub>SA</sub>-NiFeOOH) during charging exposes active sites for the oxygen evolution reaction, while reversible reduction to NiFe LDH during discharge exposes active sites for the oxygen reduction reaction. Additionally, a hierarchical air cathode featuring hydrophilic and hydrophobic layers facilitates the reversible conversion between Ru<sub>SA</sub>-NiFe LDH and Ru<sub>SA</sub>-NiFeOOH, expedites oxygen bubble desorption, and suppresses carbon corrosion. Consequently, our zinc-air batteries demonstrate a high charge/discharge capacity of 100 mAh cm<sup>−2</sup> per cycle, a voltage gap of 0.67 V, and an extended cycle life of 2400 h at 10 mA cm<sup>−2</sup>. We comprehensively elucidate the catalytic reaction thermodynamics and kinetics for the air cathode through electrode potential decoupling monitoring, oxygen bubble desorption tracking, and carbon content quantification.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54019-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54019-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
可充电锌-空气电池的实际应用面临着双功能催化剂不足、气-液-固三相界面相互矛盾以及基本认识模糊等挑战。在此,我们提出了一种类似变色龙的双功能催化剂,它由接枝到镍-铁双层氢氧化物(RuSA-NiFe LDH)上的钌单原子组成。充电时,RuSA-NiFe LDH 自适应氧化成氢氧化物(RuSA-NiFeOOH),为氧进化反应暴露出活性位点;放电时,RuSA-NiFe LDH 可逆还原成 NiFe LDH,为氧还原反应暴露出活性位点。此外,具有亲水层和疏水层的分层空气阴极促进了 RuSA-NiFe LDH 和 RuSA-NiFeOOH 之间的可逆转换,加快了氧泡解吸,并抑制了碳腐蚀。因此,我们的锌-空气电池具有每循环 100 mAh cm-2 的高充放电容量、0.67 V 的电压间隙以及在 10 mA cm-2 条件下 2400 小时的循环寿命。我们通过电极电位解耦监测、氧泡解吸跟踪和碳含量定量,全面阐明了空气阴极的催化反应热力学和动力学。
Understanding the active site in chameleon-like bifunctional catalyst for practical rechargeable zinc-air batteries
The practical application of rechargeable zinc-air batteries faces challenges stemming from inadequate bifunctional catalysts, contradictory gas-liquid-solid three-phase interfaces, and an ambiguous fundamental understanding. Herein, we propose a chameleon-like bifunctional catalyst comprising ruthenium single-atoms grafted onto nickel-iron layer double hydroxide (RuSA-NiFe LDH). The adaptive oxidation of RuSA-NiFe LDH to oxyhydroxide species (RuSA-NiFeOOH) during charging exposes active sites for the oxygen evolution reaction, while reversible reduction to NiFe LDH during discharge exposes active sites for the oxygen reduction reaction. Additionally, a hierarchical air cathode featuring hydrophilic and hydrophobic layers facilitates the reversible conversion between RuSA-NiFe LDH and RuSA-NiFeOOH, expedites oxygen bubble desorption, and suppresses carbon corrosion. Consequently, our zinc-air batteries demonstrate a high charge/discharge capacity of 100 mAh cm−2 per cycle, a voltage gap of 0.67 V, and an extended cycle life of 2400 h at 10 mA cm−2. We comprehensively elucidate the catalytic reaction thermodynamics and kinetics for the air cathode through electrode potential decoupling monitoring, oxygen bubble desorption tracking, and carbon content quantification.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.