通过 Mo5+/Mo6+ 可逆转化实现协同质子耦合电子转移,以接近 100% 的 CH4 选择性进行 CO2 光还原

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Qian Liang, Jingshan Fan, Jiawen Ding, Xiuzheng Deng, Yingtang Zhou, Jun Cai, Zheng Peng, Zhongyu Li, Zhenhui Kang
{"title":"通过 Mo5+/Mo6+ 可逆转化实现协同质子耦合电子转移,以接近 100% 的 CH4 选择性进行 CO2 光还原","authors":"Qian Liang, Jingshan Fan, Jiawen Ding, Xiuzheng Deng, Yingtang Zhou, Jun Cai, Zheng Peng, Zhongyu Li, Zhenhui Kang","doi":"10.1021/acscatal.4c04994","DOIUrl":null,"url":null,"abstract":"Regulation of the proton-coupled electron transfer (PCET) process to avoid the unbalanced proton and electron regions on the reduction active sites is key to dictating product selectivity in a photocatalytic CO<sub>2</sub> reduction reaction. Here, we show that reversible Mo<sup>5+</sup>/Mo<sup>6+</sup> as a mediator can regulate the proton and electron transfer process at the Bi<sub>2</sub>MoO<sub>6</sub> nanosheet/In<sub>2</sub>O<sub>3</sub> microtube (BI) catalyst. The formed concerted proton-coupled electron transfer enables a champion solar-to-methane efficiency of 0.15%, resulting in nearly 100% CH<sub>4</sub> selectivity and a competitive CH<sub>4</sub> yield of 46.37 μmol g<sup>–1</sup> h<sup>–1</sup> in pure water. The experiments, together with theoretical calculations, clearly validate that In sites as H<sub>2</sub>O oxidation centers provide protons, and the regulation of protons and electrons by using Mo sites forms approximate electroneutral proton/electron pairs, which are conjointly transferred to Bi sites as CO<sub>2</sub> adsorption/reduction centers, thus achieving precise hydrogenation on Bi sites for binding of the *CH<sub>3</sub>O key intermediate to form CH<sub>4</sub>.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"33 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concerted Proton-Coupled Electron Transfer by Mo5+/Mo6+ Reversible Transformation for CO2 Photoreduction with Nearly 100% CH4 Selectivity\",\"authors\":\"Qian Liang, Jingshan Fan, Jiawen Ding, Xiuzheng Deng, Yingtang Zhou, Jun Cai, Zheng Peng, Zhongyu Li, Zhenhui Kang\",\"doi\":\"10.1021/acscatal.4c04994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regulation of the proton-coupled electron transfer (PCET) process to avoid the unbalanced proton and electron regions on the reduction active sites is key to dictating product selectivity in a photocatalytic CO<sub>2</sub> reduction reaction. Here, we show that reversible Mo<sup>5+</sup>/Mo<sup>6+</sup> as a mediator can regulate the proton and electron transfer process at the Bi<sub>2</sub>MoO<sub>6</sub> nanosheet/In<sub>2</sub>O<sub>3</sub> microtube (BI) catalyst. The formed concerted proton-coupled electron transfer enables a champion solar-to-methane efficiency of 0.15%, resulting in nearly 100% CH<sub>4</sub> selectivity and a competitive CH<sub>4</sub> yield of 46.37 μmol g<sup>–1</sup> h<sup>–1</sup> in pure water. The experiments, together with theoretical calculations, clearly validate that In sites as H<sub>2</sub>O oxidation centers provide protons, and the regulation of protons and electrons by using Mo sites forms approximate electroneutral proton/electron pairs, which are conjointly transferred to Bi sites as CO<sub>2</sub> adsorption/reduction centers, thus achieving precise hydrogenation on Bi sites for binding of the *CH<sub>3</sub>O key intermediate to form CH<sub>4</sub>.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscatal.4c04994\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c04994","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

调节质子耦合电子转移(PCET)过程以避免还原活性位点上质子和电子区域的不平衡,是决定光催化二氧化碳还原反应中产物选择性的关键。在这里,我们展示了可逆的 Mo5+/Mo6+ 作为介质可以调节 Bi2MoO6 纳米片/In2O3 微管(BI)催化剂上的质子和电子转移过程。所形成的质子耦合电子传递使太阳能转化为甲烷的效率达到了 0.15%,从而使甲烷的选择性接近 100%,在纯水中的甲烷产率高达 46.37 μmol g-1 h-1。实验和理论计算清楚地验证了 In 位点作为 H2O 氧化中心提供质子,通过使用 Mo 位点调节质子和电子,形成近似电中性的质子/电子对,这些质子/电子对同时转移到作为 CO2 吸附/还原中心的 Bi 位点,从而在 Bi 位点上实现精确氢化,结合 *CH3O 关键中间产物形成 CH4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Concerted Proton-Coupled Electron Transfer by Mo5+/Mo6+ Reversible Transformation for CO2 Photoreduction with Nearly 100% CH4 Selectivity

Concerted Proton-Coupled Electron Transfer by Mo5+/Mo6+ Reversible Transformation for CO2 Photoreduction with Nearly 100% CH4 Selectivity
Regulation of the proton-coupled electron transfer (PCET) process to avoid the unbalanced proton and electron regions on the reduction active sites is key to dictating product selectivity in a photocatalytic CO2 reduction reaction. Here, we show that reversible Mo5+/Mo6+ as a mediator can regulate the proton and electron transfer process at the Bi2MoO6 nanosheet/In2O3 microtube (BI) catalyst. The formed concerted proton-coupled electron transfer enables a champion solar-to-methane efficiency of 0.15%, resulting in nearly 100% CH4 selectivity and a competitive CH4 yield of 46.37 μmol g–1 h–1 in pure water. The experiments, together with theoretical calculations, clearly validate that In sites as H2O oxidation centers provide protons, and the regulation of protons and electrons by using Mo sites forms approximate electroneutral proton/electron pairs, which are conjointly transferred to Bi sites as CO2 adsorption/reduction centers, thus achieving precise hydrogenation on Bi sites for binding of the *CH3O key intermediate to form CH4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信