Kailong Zhao , Zhijun Liu , Caihong Guo , Huili Xiang , Lili Liu , Lianwen Wang
{"title":"中国采用预防性治疗和疫苗接种策略的结核病传播动态建模与分析","authors":"Kailong Zhao , Zhijun Liu , Caihong Guo , Huili Xiang , Lili Liu , Lianwen Wang","doi":"10.1016/j.apm.2024.115779","DOIUrl":null,"url":null,"abstract":"<div><div>In China, approximately 350 million people with latent tuberculosis infection (LTBI) are the major source of new TB cases, meanwhile, BCG vaccination for newborns and children under five fails to fully arrest the TB epidemic due to the mechanisms of vaccine failure. It is expected that widespread TB preventive treatment (TPT) and new vaccination strategies may be solutions to end TB. This work allows for TPT and vaccination strategies in a nonlinear age-structured SVEIR model with nonexponential residence times to exploit the interventions for ending TB in China. Global stability analysis reveals that the target model preserves the threshold-value dynamics in terms of the basic reproduction number so that some existing results are extended, moreover, the model is applied to fit the data of TB cases in China. Furthermore, sensitivity analysis for endemic steady state suggests that four potentially feasible interventions (i.e., amplifying the inhibition effect of infectious individuals by limiting range of their mobility, shortening the treatment duration for patients, adopting BCG revaccination and enhancing the rate of TPT) can lower the steady level of infectious individuals at endemic steady state and delay its arrival time. Finally, several multifaceted strategies composed of these interventions are compared via emulational experiments. We conclude that the target of End TB Strategy by 2035 in China would be reached just by the multifaceted strategy with moderate intensity if BCG revaccination, the duration of TPT for 2 months and a 40% completion rate are realized. This investigation sheds light on the fantastic potential applications of new TPT and vaccination strategies.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"138 ","pages":"Article 115779"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and analysis of transmission dynamics of tuberculosis with preventive treatment and vaccination strategies in China\",\"authors\":\"Kailong Zhao , Zhijun Liu , Caihong Guo , Huili Xiang , Lili Liu , Lianwen Wang\",\"doi\":\"10.1016/j.apm.2024.115779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In China, approximately 350 million people with latent tuberculosis infection (LTBI) are the major source of new TB cases, meanwhile, BCG vaccination for newborns and children under five fails to fully arrest the TB epidemic due to the mechanisms of vaccine failure. It is expected that widespread TB preventive treatment (TPT) and new vaccination strategies may be solutions to end TB. This work allows for TPT and vaccination strategies in a nonlinear age-structured SVEIR model with nonexponential residence times to exploit the interventions for ending TB in China. Global stability analysis reveals that the target model preserves the threshold-value dynamics in terms of the basic reproduction number so that some existing results are extended, moreover, the model is applied to fit the data of TB cases in China. Furthermore, sensitivity analysis for endemic steady state suggests that four potentially feasible interventions (i.e., amplifying the inhibition effect of infectious individuals by limiting range of their mobility, shortening the treatment duration for patients, adopting BCG revaccination and enhancing the rate of TPT) can lower the steady level of infectious individuals at endemic steady state and delay its arrival time. Finally, several multifaceted strategies composed of these interventions are compared via emulational experiments. We conclude that the target of End TB Strategy by 2035 in China would be reached just by the multifaceted strategy with moderate intensity if BCG revaccination, the duration of TPT for 2 months and a 40% completion rate are realized. This investigation sheds light on the fantastic potential applications of new TPT and vaccination strategies.</div></div>\",\"PeriodicalId\":50980,\"journal\":{\"name\":\"Applied Mathematical Modelling\",\"volume\":\"138 \",\"pages\":\"Article 115779\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0307904X24005328\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X24005328","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling and analysis of transmission dynamics of tuberculosis with preventive treatment and vaccination strategies in China
In China, approximately 350 million people with latent tuberculosis infection (LTBI) are the major source of new TB cases, meanwhile, BCG vaccination for newborns and children under five fails to fully arrest the TB epidemic due to the mechanisms of vaccine failure. It is expected that widespread TB preventive treatment (TPT) and new vaccination strategies may be solutions to end TB. This work allows for TPT and vaccination strategies in a nonlinear age-structured SVEIR model with nonexponential residence times to exploit the interventions for ending TB in China. Global stability analysis reveals that the target model preserves the threshold-value dynamics in terms of the basic reproduction number so that some existing results are extended, moreover, the model is applied to fit the data of TB cases in China. Furthermore, sensitivity analysis for endemic steady state suggests that four potentially feasible interventions (i.e., amplifying the inhibition effect of infectious individuals by limiting range of their mobility, shortening the treatment duration for patients, adopting BCG revaccination and enhancing the rate of TPT) can lower the steady level of infectious individuals at endemic steady state and delay its arrival time. Finally, several multifaceted strategies composed of these interventions are compared via emulational experiments. We conclude that the target of End TB Strategy by 2035 in China would be reached just by the multifaceted strategy with moderate intensity if BCG revaccination, the duration of TPT for 2 months and a 40% completion rate are realized. This investigation sheds light on the fantastic potential applications of new TPT and vaccination strategies.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.